

La méthode des champs de phase : formulation « classique », coarse-graining, formulation « étroite » et quelques applications.

A. Finel

LEM, CNRS-ONERA

Plan:

- Ist part : introduction (order parameters, Ginzburg-Landau energy...)
- 2nd part : a phase field model by coarse-graining
- 3rd part : the Sharp Phase Field Method

lère partie :

Introduction

Paramètres d'ordre, énergies Ginzburg-Landau, cinétiques...

Modelling : different scales

Macroscopic scale

- domains or phases separated by sharp boundaries
- PDE within the domains
- interface tracking
- \rightarrow free-boundary problems

Mesoscopic scale

- fields are continuous
- interfaces are diffuse
- → Phase field models

Microscopic scale

- atoms are resolved
- two-body (or many-body) forces
- \rightarrow Atomistic models (Dyn. Mol., Monte Carlo...)

Top-down regularisation of sharp interfaces

Bottom-up :

- coarse-graining
- homogenisation
- statistical physics

Modelling : different scales

This course :

Microstructures and Phase Field simulations

Rafts in Ni-based Coherency Ni-based Shape memory superalloys loss alloys superalloys Exp. $= 76^{\circ} + 2^{\circ}$ Cottura et al Geslin et al, Finel et al. Cottura et al. C. R. Phys. (2010) Acta Mat. (2015) APL (2014) **JMPS (2012)** $\theta = 79^{\circ}$

PFM

 $25~\mathrm{nm}$

 $2.3~\mu{
m m}$

Order parameters

→ Primary order parameter :

- phase transition controlled by concentration
- therefore, primary order parameter (OP) will be c(x) : non-linearities of free energy driven by c(x) !

→ Secondary order parameter :

- if atomic size are different : precipitation generates a strain field $\epsilon_{ij}(x)$
- $\epsilon_{ij}(x)$ is a "consequence" of c(x): it does not drive the transition
- therefore, $\epsilon_{ij}(x)$ is a secondary order parameter : no non-linearities on $\epsilon_{ij}(x)$

Thermodynamic model

- \rightarrow Primary order parameter is c(x) :
 - Ginzburg-Landau energy on c(x)

$$F_{GL}(\{c(x)\}) = \int d^3x \{ f_L(c(x)) + \frac{1}{2}\lambda \|\nabla c(x)\|^2 \}$$
$$f_L(c) = A(c-c_1)^2(c-c_2)^2$$

- Coefficients A et λ from interface energy and thickness

$$\sigma = \frac{(c_2 - c_1)^3}{3\sqrt{2}} \sqrt{\lambda A}$$
$$\xi = \frac{2\sqrt{2}}{(c_2 - c_1)} \sqrt{\frac{\lambda}{A}}$$

$$c(x) = \frac{c_2 + c_1}{2} + \frac{c_2 - c_1}{2} \tanh(\frac{2x}{\xi})$$

- → Contribution of secondary order parameter, here strain field :
 - atomic size difference is defined by an eigenstrain $\epsilon^0_{ij}(x)$:

$$\epsilon_{ij}^0(x) = \epsilon_{ij}^0(c(x) - c_0) \qquad (\text{ex.: } \epsilon_{ij}^0 = \epsilon^0 \delta_{ij})$$

• if $\epsilon_{ij}(x)$ is the actual strain, elastic energy is given by (linear elasticity) :

$$E_{strain}(\{\epsilon_{ij}(x)\}) = \int d^3x \ \lambda_{ijkl}(x) \left[\epsilon_{ij}(x) - \epsilon_{ij}^0(x)\right] \left[\epsilon_{kl}(x) - \epsilon_{kl}^0(x)\right]$$

Kinetics

Secondary order parameter :

- here, strain field $\epsilon_{ij}(x)$
- elastic relaxation time << characteristic time for diffusion
- therefore, we suppose that strain field relaxes instantaneously (quasi-static approx.) :

$$E_{strain}^{eq}(\{c(x)\}) = \min_{\{\epsilon_{ij}(x)\}} E_{strain}(\{c(x)\}, \{\epsilon_{ij}(x)\})$$

with
$$E_{strain}(\{c(x)\}, \{\epsilon_{ij}(x)\}) = \int d^3x \ \lambda_{ijkl}(x) \left[\epsilon_{ij}(x) - \epsilon_{ij}^0(c(x))\right] \left[\epsilon_{kl}(x) - \epsilon_{kl}^0(c(x))\right]$$

[more precisely : minimise wrt displacement field $u_i(x)$ with $\epsilon_{ij}(x) = \frac{1}{2}(\frac{\partial u_i(x)}{\partial x_j} + \frac{\partial u_j(x)}{\partial x_i})$]

 \rightarrow Thermodynamics of primary order parameter is given by :

 $F_{tot}(\{c(x)\}) = F_{GL}(\{c(x)\}) + E_{strain}^{eq}(\{c(x)\})$

Kinetics (cont.)

Primary order parameter :

• concentration *c*(*x*,*t*) is locally conserved :

$$\frac{\partial c(x,t)}{\partial t} = -\text{div} \ \vec{j}(x,t)$$

• flux is non-zero if the system is out of equilibrium :

$$\vec{j}(x,t) = -M(c(x,t))\nabla\mu(x,t)$$

where $\ M(c)$ is the mobility and $\ \mu(x,t)$ the alloy chemical potential

$$\mu(x,t) = \frac{\delta F_{tot}(\{c(x,t)\})}{\delta c(x,t)}$$

• if M does not depend on concentration, we get the Cahn-Hilliard eq. (1958) :

$$\frac{\partial c(x,t)}{\partial t} = M \nabla^2 \frac{\delta F_{tot}(\{c(x,t)\})}{\delta c(x,t)}$$

• Easy to verify that CH eq. guaranties a decrease of total free energy :

$$\frac{dF_{tot}(\{c(x,t)\})}{dt} = \int d^3r \; \frac{\delta F_{tot}(\{c(r,t)\})}{\delta c(x,t)} \; \frac{\partial c(x,t)}{\partial t}$$
$$\leqslant 0$$

Kinetics (cont.)

Primary order parameter :

if we need fluctuations to overcome energy barriers (for nucleation...), we add a Langevin noise $\eta(x,t)$:

$$\frac{\partial c(x,t)}{\partial t} = M \nabla^2 \frac{\delta F_{GL}(\{c(x,t)\})}{\delta c(x,t)} + \eta(x,t)$$

where the noise term must fulfilled the "fluctuation-dissipation" theorem :

$$<\eta(x,t)>=0$$

$$<\eta(x,t)\ \eta(x',t')>=-2kTM\nabla^2\delta(x-x')\ \delta(t-t')$$

in order to recover the correct configurational probabilities when equilibrium is reached :

$$P(\{c(x,t)\}) \sim \exp(-\frac{F_{tot}(\{c(x,t)\})}{kT})$$

 \rightarrow But this procedure is incoherent !!!

Kinetics (cont.)

→ The procedure is not well-controlled :

- to add a noise to a predefined non-linear equilibrium free energy is inconsistent (fluctuations modify the equilibrium concentrations)
- fluctuations are needed : they permit to overcome energy barriers that i() result from metastable energies...
- but these metastable energies are not (uniquely) defined by the phase diagram nor by the interface energies...

→ How to define a "good" phase field theory with fluctuations ?

- we cannot use a macroscopic free energy, i.e. a free energy that is fitted to phase diagrams (such as Calphad free energies)
- concentration fluctuations (generated by a noise term) depend on the free energy density AND on the gradient pre-factor λ and mobility M, which themselves may depend on concentration...

Kinetics and free energy functional must be derived simultaneously by coarse-graining from a lower scale...

(see part 2)

Order parameters

• A simple example : disorder \longrightarrow "antiferromagnetic" order

- We need to differentiate the different variants
- Hence, the notion of "long-range" order parameters (OP)
- How to identify the long-range OP's ?

Order parameters (cont.)

• General method ⁽¹⁾: (atomic) concentration wave decomposition

- The symmetry change is controlled by $\,\eta\,:\,{\rm primary}\;{\rm OP}\,$
- Transition may be associated to a change in c_0 : secondary OP

Order parameters (cont.)

• Generic situation : inhomogeneous distribution of the variants :

- Order parameter $\eta(x)$ varies slowly with x, where x is the unit cell coordinate
- Concentration on site (x+u), where u is the relative coordinate inside the unit cell at position x, is written as :

$$c(x+u) = c_0(x) + \eta(x) \exp iq.u$$

where $c_0(x)$ and $\eta(x)$ are the "average" concentration and long-range order-parameter in cell "x", respectively.

Thermodynamic model

- Transition controlled by primary order parameter $\,\eta(x)$
- Therefore, the non-linearity in the Landau free energy must be controlled by $\eta(x)$
- Landau energy must be invariant if we exchange the 2 variants
 - → if we have a 2nd order transition (continuous transition between disorder and order) :

$$f_{GL}(\eta) = a(T)\frac{\eta^2}{2} + b\frac{\eta^4}{4} + \frac{\lambda}{2}||\nabla\eta||^2$$

with
$$a(T) = A(T - T_c)$$
$$A > 0$$
$$b > 0$$

Thermodynamic model

- Transition controlled by primary order parameter $\eta(\boldsymbol{x})$
- Therefore, the non-linearity in the Landau free energy must be controlled by $\eta(\boldsymbol{x})$
- Landau energy must be invariant if we exchange the 2 variants
 - → if we have a lst order transition (coexistence between disorder and order) :

$$f_{GL}(\eta) = a(T)\frac{\eta^2}{2} - b\frac{\eta^4}{4} + d\frac{\eta^6}{6} + \frac{\lambda}{2}||\nabla\eta||^2$$
with
$$a(T) = A(T - T_0)$$

$$A > 0$$

$$b > 0$$

$$d > 0$$

 \rightarrow if we have a 1st order transition with a concentration change :

$$f_{GL}(\eta, c) = a(c - c_0)^2 + (c_1 - c)\frac{\eta^2}{2} - b\frac{\eta^4}{4} + d\frac{\eta^6}{6} + \frac{\lambda}{2}||\nabla\eta||^2 + \frac{\beta}{2}||\nabla c||^2$$

Kinetics

• Concentration is conserved \rightarrow Cahn-Hilliard eq. (with noise) :

$$\frac{\partial c(x,t)}{\partial t} = M \nabla^2 \frac{\partial f_{GL}(\{c(x,t)\})}{\partial c(x,t)} + \xi(x,t)$$

• Order parameter $\eta(x)$ is not conserved \longrightarrow Allen-Cahn eq. (with noise) :

$$\frac{\partial \eta(x,t)}{\partial t} = -L \frac{\partial f_{GL}(\{c(x,t)\})}{\partial \eta(x,t)} + \zeta(x,t)$$

with the "fluctuation-dissipation" theorem for the noise terms :

$$<\xi(x,t) > = 0$$

$$<\xi(x,t) \ \xi(x',t') > = -2kTM\nabla^2\delta(x-x') \ \delta(t-t')$$

$$<\zeta(x,t) > = 0$$

$$<\zeta(x,t) \ \zeta(x',t') > = 2kTL\delta(x-x') \ \delta(t-t')$$

$$<\xi(x,t) \ \zeta(x',t') > = <\xi(x,t) > <\zeta(x',t') > = 0$$

A more complexe ordering transition : superalloys $\gamma-\gamma'$

Order parameters

 $FCC(\gamma) \to L1_2(\gamma')$

- FCC lattice may be decomposed into 4 simple cubic lattices
- In L12, 1 among these 4 SC lattices is (essentially) occupied by the minority atomic species (○) and the 3 others by the majority atomic species (●)
- Therefore, $L1_2$ phase may display 4 different variants (with the same concentration), each of which can be obtained from each of the other three by a translation of type $\langle \frac{1}{2} \frac{1}{2} 0 \rangle$:

• We need long-range order parameters to differentiate these 4 variants

A more complexe ordering transition : superalloys $\gamma-\gamma'$

Order parameters

• Ex : I single homogeneous $L1_2$ variant :

 $c(x) = c_0 + \eta_1 \exp(-iq_1 \cdot x) + \eta_2 \exp(-iq_2 \cdot x) + \eta_3 \exp(-iq_3 \cdot x)$ with $q_1 = [100] \quad q_2 = [010] \quad q_3 = [001]$

- order parameters η_i represent the amplitude of the wave with q-vector q_i
- order parameters for each of the 4 variants :

variant 1: $(\eta_1, \eta_2, \eta_3) \sim (111)$ variant 2: $(\eta_1, \eta_2, \eta_3) \sim (1\overline{1}\overline{1})$ variant 3: $(\eta_1, \eta_2, \eta_3) \sim (\overline{1}\overline{1}1)$ variant 4: $(\eta_1, \eta_2, \eta_3) \sim (\overline{1}1\overline{1})$

Order parameters (cont.)

 \rightarrow General method : concentration wave decomposition (cont.)

• generic situation : inhomogeneous distribution of 4 variants

- order parameters varie slowly with R, where R is the unit cell (fcc cube) coordinate
- concentration on site of coordinate R+r, where r is the relative coordinate inside the unit cell, may be written as :

$$c(R+r) = c_0(R) + \eta_1(R) \exp(-iq_1 r) + \eta_2(R) \exp(-iq_2 r) + \eta_3(R \exp(-iq_3 r)) + \eta_3(R$$

• where $c_0(R)$ and $\eta_i(R)$ are the "average" concentration and order parameters in cell R.

Ordering transition : superalloys $\gamma - \gamma'$

Landau free energy

- Transition is controlled by the long-range order parameters $\eta_i(R)$, which play the rôle of primary order parameters
- Thus, we look for a non-linear Landau function al(iR)
- This functional must be invariant w.r.t. symmetry operations that leave the FCC lattice invariant, i.e. symmetry operations that belong to the FCC space group.

Example : exchanges between the variants by translations of type $\frac{1}{2} < 110 > :$

- FCC symmetry operations lead to change the sign of two order parameters or to permute them
- look for polynomial components that are invariant w.r.t. these operations
- ... and stop the expansion to the lowest order compatible with the existence of a transition...

Ordering transition : superalloys $\gamma - \gamma'$

Landau free energy (cont.)

• Here we get :

$$\begin{array}{rcl} \eta_1 + \eta_2 + \eta_3 : & no \\ \eta_1^2 + \eta_2^2 + \eta_3^3 : & yes \\ \eta_1\eta_2 + \eta_2\eta_3 + \eta_3\eta_1 : & no \\ & \eta_1\eta_2\eta_3 : & yes \\ \eta_1^2\eta_2 + \eta_1\eta_2^2 + \dots : & no \\ & \eta_1^4 + \eta_2^4 + \eta_3^4 : & yes \end{array}$$

• Thus, the "minimal" Ginzburg-Landau energy density has the following form :

$$f_{GL} = \frac{A}{2}(c-c_0)^2 + \frac{B}{2}(c'-c)(\frac{\eta_1^2 + \eta_2^2 + \eta_3^2}{3}) - C\eta_1\eta_2\eta_3 + \frac{D}{4}(\frac{\eta_1^4 + \eta_2^4 + \eta_3^4}{3}) + \frac{\lambda}{2} ||\nabla c(x,t)||^2 + \frac{\beta_i}{2} ||\nabla \eta_i(x,t)||^2$$

Ordering transition : superalloys $\gamma - \gamma'$

Kinetics

• Concentration is conserved \rightarrow Cahn-Hilliard eq. (with noise) :

$$\frac{\partial c(x,t)}{\partial t} = M \nabla^2 \frac{\partial f_{GL}(\{c(x,t)\})}{\partial c(x,t)} + \xi(x,t)$$

• Order parameter $\eta(x)$ is not conserved \longrightarrow Allen-Cahn eq. (with noise) :

$$\frac{\partial \eta_i(x,t)}{\partial t} = -L \frac{\partial f_{GL}(\{c(x,t)\})}{\partial \eta_i(x,t)} + \zeta_i(x,t) \qquad i = 1 \text{ to } 4$$

with the "fluctuation-dissipation" theorem for the noise terms :

$$<\xi(x,t) > = 0$$

$$<\xi(x,t) \ \xi(x',t') > = -2kTM\nabla^{2}\delta(x-x') \ \delta(t-t')$$

$$<\zeta_{i}(x,t) > = 0$$

$$<\zeta_{i}(x,t) \ \zeta_{i}(x',t') > = 2kTL\delta(x-x') \ \delta(t-t')$$

$$<\xi(x,t) \ \zeta_{i}(x',t') > = <\xi(x,t) > <\zeta_{i}(x',t') >$$

$$<\zeta_{i}(x,t) \ \zeta_{j}(x',t') > = <\zeta_{i}(x,t) > <\zeta_{j}(x',t') > = 0 \qquad i \neq$$

j

Application I : a simple phase separating system (segregation)

- Primary order parameter : concentration c(x)
- Ginzburg-Landau energy on c(x) :

$$F_{GL}(\{c(x)\}) = \int d^3x \{ f_L(c(x)) + \frac{1}{2}\lambda \|\nabla c(x)\|^2 \}$$
$$f_L(c) = A(c-c_1)^2 (c-c_2)^2$$

• atomic size difference is defined by an eigenstrain :

$$\epsilon_{ij}^0(x) = \epsilon_{ij}^0(c(x) - c_0) \qquad (\text{ex.: } \epsilon_{ij}^0 = \frac{\Delta a}{a}\delta_{ij})$$

• elastic energy (linear elasticity) :

$$E_{strain}(\{\epsilon_{ij}(x), c(x)\}) = \int d^3x \ \lambda_{ijkl}(x) \ [\epsilon_{ij}(x) - \epsilon_{ij}^0(x)] \ [\epsilon_{kl}(x) - \epsilon_{kl}^0(x)]$$

- local stress :

$$\sigma_{ij}(r) = \frac{\delta E_{strain}(\{\epsilon_{ij}(x), c(x)\})}{\delta \epsilon_{ij}(r)} = \lambda_{ijkl}(x) \left(\epsilon_{kl}(r) - \epsilon_{kl}^0(r)\right)$$

- mechanical equilibrium :

- if homogeneous elasticity :

 $f_i(r) = \frac{\partial \sigma_{ij}(r)}{\partial x_j} = 0$

$$\lambda_{ijkl} \frac{\partial \epsilon_{kl}(r)}{\partial x_j} = \lambda_{ijkl} \frac{\partial \epsilon_{kl}^0(r)}{\partial x_j}$$

+
$$\epsilon_{kl}^{0}(r)$$
 - r • $\delta\epsilon_{kl}(r) \sim \frac{1}{r^3}$

- residual strain energy : two-body forces

$$E_{strain}^{eq}(\{c(x)\}) = \frac{V}{2} \sum_{q \neq 0} B(q) ||c(q)||^2$$

$$B(q) = \lambda_{ijkl} \epsilon^0_{ij} \epsilon^0_{kl} - q_i \sigma^0_{ij} G_{jl}(q) \sigma^0_{lm} q_m$$

$$G_{ik}^{-1}(q) = \lambda_{ijkl}^0 \, q_j q_l$$

Application I : a simple phase separating system (segregation)

• total energy :

$F_{tot}(\{c(x)\}) = F_{GL}(\{c(x)\}) + E_{strain}^{eq}(\{c(x)\})$

- kinetics : concentration is conserved \longrightarrow Cahn-Hilliard equation :

$$\frac{\partial c(x,t)}{\partial t} = M \nabla^2 \frac{\delta F_{tot}(\{c(x,t)\})}{\delta c(x,t)}$$

- material parameters :
 - phase diagram : $c_1 = 0.05$ $c_2 = 0.95$
 - interface energy : $\sigma = 10 \ {\rm mJm}^{-2}$
 - size effects : $\Delta a/a = 0.0028$
- simulation :
 - 256x256, grid spacing : $d=4.3~\mathrm{nm}$

elastic constants matrix (GPA) $C_{11} = 255$ $C_{12} = 205$ $C_{44} = 70$

- precipitates (GPa) $C_{11} = 355$ $C_{12} = 115$
- $C_{44} = 70$

no size effect

2

→ Ginzburg-Landau free energy

Boussinot, Le Bouar, Finel, Acta Mat., 2010

$$F_{GL}(\{c\},\{\eta_i\}) = \int dV \left(f_{hom}(\{c\},\{\eta_i\}) + \frac{\lambda}{2} \mid \nabla c \mid^2 + \frac{\beta}{2} \mid \nabla \eta_i \mid^2 \right)$$

Landau potential :

$$f_{homo}(\{c\},\{\eta_i\}) = \frac{A}{2} \left(c - c_1 \right)^2 + \frac{B}{2} \left(c_2 - c \right) \left(\frac{\eta_1^2 + \eta_2^2 + \eta_3^2}{3} \right) - C_{\text{sma}_\text{LT2_MeW_ny,mb}} + \frac{D}{4} \left(\frac{\eta_1^4 + \eta_2^4 + \eta_3^4}{3} \right) + C_{\text{sma}_\text{LT2_MeW_ny,mb}} + \frac{D}{4} \left(\frac{\eta_1^4 + \eta_2^4 + \eta_3^4}{3} \right) + C_{\text{sma}_\text{LT2_MeW_ny,mb}} + \frac{D}{4} \left(\frac{\eta_1^4 + \eta_2^4 + \eta_3^4}{3} \right) + C_{\text{sma}_\text{LT2_MeW_ny,mb}} + \frac{D}{4} \left(\frac{\eta_1^4 + \eta_2^4 + \eta_3^4}{3} \right) + C_{\text{sma}_\text{LT2_MeW_ny,mb}} + C_{\text{sma}_mp} + C_{\text{sma$$

→ Kinetics of "chemical fields" :

conserved field (Cahn-Hilliard) non-conserved field (Allen-Cahn) $\frac{\partial c(r,t)}{\partial t} = M \nabla^2 \frac{\delta F}{\delta c}$ $\frac{\partial \eta_i(r,t)}{\partial t} = -\Gamma \frac{\delta \tilde{F}_{04}}{\delta n \cdot \log t}$

→ Formation of a cuboïdal microstructure :

M. Cottura, Y. Le Bouar, A. Finel, B. Appolaire, K. Ammar, S. Forest, JMPS, 2012

2

- no plasticity
- stress-free condition
- misfit : $\delta = 2(a_{\gamma'} a_{\gamma})/(a_{\gamma'} + a_{\gamma}) = -0.1\%$
- simulation box :
 - 512x512
 - grid spacing : 4.4 nm

Importance of ΔC in AM1 superalloys

Cottura, Le Bouar, Appolaire, Finel Acta Mat., 2015

3D

- Lattice misfit : $\delta = 2(a_{\gamma'} a_{\gamma})/(a_{\gamma'} + a_{\gamma}) = -0.1\%$
- Different $\Delta C'$ values (6.8³ μ m³ with 512³ nodes d = 13.3 nm)

- $\Delta C' = 0 - 17\%$: big precipitates presenting a irregular shape + elongated precipitates

- $\Delta C' = 50\%$: qualitative agreement !

Formation of a bimodal microstructure by "double quenching"

 $1 \ \mu m$

Boussinot, Finel, Le Bouar, Acta Mat., 2009

Chellman et al (1989)

Influence of external stress with elastic inhomogeneity

• External stress has an influence on the microstructure only if elastic constants of γ and γ' differ !

elastic constants matrix γ (GPA) precipitates γ' (GPa)

C_{11}	=	190	C_{11}	=	210
C_{12}	=	138	C_{12}	=	150
C_{44}	=	110	C_{44}	=	124

- interface energy : $\sigma = 5 \text{ mJm}^{-2}$

misfit :
$$\delta = 2(a_{\gamma'}-a_{\gamma})/(a_{\gamma'}+a_{\gamma})=0.37\%$$

Boussinot, Le Bouar, Finel,

Acta Mat., 2010

Uniaxial compression 600 MPa along [100] : formation of plate-like precipitates perpendicular to the loading axis

Uniaxial tension 600 MPa along [100] : formation of rod-like precipitates along the loading axis

[001]

256 nm

3