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Plan :

1st part  :  introduction (order parameters, Ginzburg-Landau energy…)

2nd part :  a phase field model by coarse-graining

3rd part :  the Sharp Phase Field Method



Introduction

Paramètres d’ordre, énergies Ginzburg-Landau, cinétiques… 

1ère partie :



Modelling : different scales
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Macroscopic scale
- domains or phases separated by sharp boundaries

- PDE within the domains

- interface tracking

⟶ free-boundary problems

Mesoscopic scale
- fields are continuous

- interfaces are diffuse

⟶ Phase field models

Microscopic scale
- atoms are resolved

- two-body (or many-body) forces

⟶ Atomistic models (Dyn. Mol., Monte Carlo…)

Top-down
regularisation of 
sharp interfaces

Bottom-up : 
• coarse-graining
• homogenisation
• statistical physics



Modelling : different scales
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Mesoscopic scale
- fields are continuous

- interfaces are diffuse

⟶ Phase field models

Microscopic scale
- atoms are resolved

- two-body (or many-body) forces

⟶ Atomistic models (Dyn. Mol., Monte Carlo…)

Bottom-up : 
• coarse-graining
• homogenisation
• statistical physics

From “scratch” :
• order parameters
• Laudau rules 

(symmetry)
• kinetics laws 

(conserved or 
non-conserved)

This course : 



Microstructures and Phase Field simulations
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Ni-based 
superalloys

Shape memory 
alloys

Coherency 
loss

Rafts in Ni-based 
superalloys

Cottura et al
 Acta Mat. (2015)

Finel et al,
C. R. Phys. (2010)

Geslin et al, 
APL (2014)

Cottura et al, 
JMPS (2012)

Exp. 

PFM 25 nm

� = 78�

� = 79�



A simple phase separating system : segregation
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Order parameters

x

c(x)

c1

c2

→ Primary order parameter :

• phase transition controlled by concentration
• therefore, primary order parameter (OP) will be c(x) : non-linearities of free energy driven by c(x) !

→ Secondary order parameter :

• if atomic size are different :  precipitation generates a strain field 
•          is a “consequence” of c(x) : it does not drive the transition
• therefore,           is a secondary order parameter : no non-linearities on 
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Thermodynamic model
→ Primary order parameter is c(x) :

• Ginzburg-Landau energy on c(x)

A simple phase separating system : segregation

→ Contribution of secondary order parameter, here strain field :

• if            is the actual strain, elastic energy is given by (linear elasticity) :

• atomic size difference is defined by an eigenstrain           :

• Coefficients  A et 𝜆 from interface energy and thickness 

-2 -1  0  1  2

X / !

c

𝜉
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Kinetics
Secondary order parameter :

• here, strain field

• elastic relaxation time << characteristic time for diffusion

• therefore, we suppose that strain field relaxes instantaneously (quasi-static approx.) :

[more precisely : minimise wrt displacement field           with                                                    ]

A simple phase separating system : segregation

→ Thermodynamics of primary order parameter is given by :
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Primary order parameter :
• concentration c(x,t) is locally conserved :

A simple phase separating system : segregation

Kinetics (cont.)

where           is the mobility and             the alloy chemical potential 

• flux is non-zero if the system is out of equilibrium :

• if M does not depend on concentration, we get the Cahn-Hilliard eq. (1958) :

• Easy to verify that CH eq.  guaranties a decrease of total free energy :
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Primary order parameter :

if we need fluctuations to overcome energy barriers (for nucleation…), we add a Langevin noise           :

where the noise term must fulfilled the “fluctuation-dissipation” theorem :

in order to recover the correct configurational probabilities when equilibrium is reached :

→  But this procedure is incoherent !!!

A simple phase separating system : segregation

Kinetics (cont.)
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• to add a noise to a predefined non-linear equilibrium free energy is 
inconsistent (fluctuations modify the equilibrium concentrations)

• fluctuations are needed : they permit to overcome energy barriers that 
result from metastable energies…

• but these metastable energies are not (uniquely) defined by the phase 
diagram nor by the interface energies…

→ The procedure is not well-controlled :

→ How to define a “good” phase field theory with fluctuations ?
• we cannot use a macroscopic free energy, i.e. a free energy that is fitted to phase diagrams 

(such as Calphad free energies)

• concentration fluctuations (generated by a noise term) depend on the free energy density 

AND on the gradient pre-factor 𝜆 and mobility M, which themselves may depend on 

concentration…

Kinetics and free energy functional must be derived 
simultaneously by coarse-graining from a lower scale… 

(see part 2)

A simple phase separating system : segregation

Kinetics (cont.)



Alloys with a simple ordering transition
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Order parameters

• A simple example : disorder ⟶ “antiferromagnetic” order

• We need to differentiate the different variants

• Hence, the notion of “long-range” order parameters (OP)

• How to identify the long-range OP’s ?

variant 2

variant 1
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Order parameters (cont.)

• General method (1) : (atomic) concentration wave decomposition

• The symmetry change is controlled by     :  primary OP 

• Transition may be associated to a change in      :   secondary OP 

(1) Krivoglaz 69, Khachaturyan 83 

long-range order parameter        : 

Alloys with a simple ordering transition
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• Generic situation : inhomogeneous distribution of the variants :

�(x) l� a

variant 1 variant 2disorder

Order parameters (cont.)

• Concentration on site (x+u), where u is the relative coordinate inside the unit cell at position x, is written as :

where         and        are the “average” concentration and long-range order-parameter in cell “x”, respectively.

• Order parameter        varies slowly with x, where x is the unit cell coordinate

Alloys with a simple ordering transition
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if we have a 2nd order transition (continuous transition 
between disorder and order) :

⟶ 
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with

• Transition controlled by primary order parameter 

• Therefore, the non-linearity in the Landau free energy must 
be controlled by  

Thermodynamic model

• Landau energy must be invariant if we exchange the 2 variants

Alloys with a simple ordering transition
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• Transition controlled by primary order parameter 

• Landau energy must be invariant if we exchange the 2 variants

if we have a 1st order transition (coexistence between 
disorder and order) :

⟶ 
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if we have a 1st order transition with a concentration change :⟶ 

Thermodynamic model

• Therefore, the non-linearity in the Landau free energy must 
be controlled by  

Alloys with a simple ordering transition
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Kinetics

• Concentration is conserved ⟶ Cahn-Hilliard  eq. (with noise) :

with the “fluctuation-dissipation” theorem for the noise terms :

• Order parameter         is not conserved ⟶ Allen-Cahn eq. (with noise) :

Alloys with a simple ordering transition



19

Order parameters

A more complexe ordering transition : superalloys 

• We need long-range order parameters to differentiate these 4 variants 

• Therefore,        phase may display 4 different variants (with the same concentration), each of which 
can be obtained from each of the other three by a translation of type              :

• FCC lattice may be decomposed into 4 simple cubic lattices

• In       , 1 among these 4 SC lattices is (essentially) occupied by the minority atomic 
species (   ) and the 3 others by the majority atomic species (   )

The 4 L12 variants : projection along direction [001] ; 
atoms with the same size lie on the same (001) plane[100]

[010]

variants 1 variants 2 variants 3 variants 4
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Order parameters

⟶ General method : concentration wave decomposition
• Ex : 1 single homogeneous        variant :

with

• order parameters      represent the amplitude of the wave with q-vector

• order parameters for each of the 4 variants :

A more complexe ordering transition : superalloys 

The 4 L12 variants : projection along direction [001] ; 
atoms with the same size lie on the same (001) plane[100]

[010]

variants 1 variants 2 variants 3 variants 4
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Order parameters (cont.)

⟶ General method : concentration wave decomposition (cont.)

• generic situation : inhomogeneous distribution of 4 variants

• order parameters varie slowly with R, where R is the unit cell (fcc cube) coordinate

• concentration on site of coordinate R+r, where r is the relative coordinate 
inside the unit cell, may be written as :

• where          and          are the “average” concentration and order parameters in cell R.

�(x) l� a

variant 1 variant 2disorder

Ordering transition : superalloys 
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Landau free energy
• Transition is controlled by the long-range order parameters         , which play the rôle of primary order 

parameters  

• Thus, we look for a non-linear Landau functional in 

• This functional must be invariant w.r.t. symmetry operations that leave the FCC lattice invariant, i.e. symmetry 
operations that belong to the FCC space group. 

• FCC symmetry operations lead to change the sign of two order parameters or to permute them

• … and stop the expansion to the lowest order compatible with the existence of a transition…

• look for polynomial components that are invariant w.r.t. these operations

Ordering transition : superalloys 

[100]

[010]

Example : exchanges between the variants by translations of type                :   
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Landau free energy (cont.)

• Here we get :

• Thus, the “minimal” Ginzburg-Landau energy density has the following form :

Ordering transition : superalloys 
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Kinetics

• Concentration is conserved ⟶ Cahn-Hilliard  eq. (with noise) :

Ordering transition : superalloys 

with the “fluctuation-dissipation” theorem for the noise terms :

• Order parameter         is not conserved ⟶ Allen-Cahn eq. (with noise) :
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• Ginzburg-Landau energy on c(x) :

• Primary order parameter : concentration c(x)

• elastic energy (linear elasticity) :

• atomic size difference is defined by an eigenstrain :

- local stress : 

ε
0

kl(r)+ -

“dipole-like”

r δεkl(r) ∼
1

r3

interactions élastiques sont à longue portée

⇥ijkl
⇤ �kl(r)

⇤ xj
= ⇥ijkl

⇤ �0kl(r)
⇤ xj

- mechanical equilibrium : 

- residual strain energy :  two-body forces

- if homogeneous elasticity :

long-range interactions (dipole-like)

Application 1 : a simple phase separating system (segregation)
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• total energy :

• kinetics : concentration is conserved ⟶ Cahn-Hilliard equation :

• material parameters :

- phase diagram : 

- interface energy :

- size effects :

elastic constants matrix (GPA) precipitates (GPa)

Application 1 : a simple phase separating system (segregation)

no size effect
size effect 

homogeneous elastic constants
size effect 

inhomogeneous elastic constants

• simulation : 

- 256x256, grid spacing :
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Application 2 : superalloys 
→ Ginzburg-Landau free energy

FGL({c}, {⇥i}) =
�

dV ( fhom({c}, {⇥i}) +
⇤

2
| ⌅c |2 +

�

2
| ⌅⇥i |2 )

fhomo({c}, {⌘i}) =
A

2
( c� c1 )2 +

B

2
( c2 � c )(

⌘21 + ⌘22 + ⌘23
3

)� C⌘1⌘2⌘3 +
D

4
(
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3
)

Landau potential :

B = 2A(c�0 � c�)

C = 6A(c�0 � c�)(c0 � c�)

D = 2A(c�0 � c�)(c�0 � c� + 2c0)

�/�0 interface energy = 10 mJm�2
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→ Kinetics of “chemical fields” :

conserved field (Cahn-Hilliard) non-conserved field (Allen-Cahn)

Boussinot, Le Bouar, Finel,
Acta Mat., 2010
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t = 1h t = 5h t = 16h

C11 C12 C44

γ 197 144 90

γ’ (∆C’=40%) 193 118 124

→ Formation of a cuboïdal microstructure :

Application 2 : superalloys             (cont.) 
M. Cottura, Y. Le Bouar, A. Finel, B. Appolaire, 

K. Ammar, S. Forest, JMPS, 2012

- no plasticity

- stress-free condition

- misfit : 

- simulation box : 

- 512x512
- grid spacing : 4.4 nm
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0%

17%

50%

AM1

-  ∆C’ = 0 - 17%: big precipitates presenting a irregular shape + elongated precipitates

-  ∆C’ = 50% : qualitative agreement !

Importance of ∆C’ in AM1 superalloys

3D

0% 17%

50%

•  Lattice misfit : 

•  Different ∆C’ values (6.83 μm3 with 5123 nodes - d = 13.3 nm)

Application 2 : superalloys             (cont.) 
Cottura, Le Bouar,  Appolaire, Finel

 Acta Mat., 2015
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Application 2 : superalloys             (cont.) 

Formation of a bimodal microstructure by “double quenching”

Boussinot, Finel, Le Bouar, Acta Mat., 2009 Chellman et al (1989)
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Application 2 : superalloys             (cont.) 

Influence of external stress with elastic inhomogeneity 

elastic constants matrix     (GPA) precipitates      (GPa)

• External stress has an influence on the microstructure only if 
elastic constants of     and     differ !

Boussinot, Le Bouar, Finel,
Acta Mat., 2010

Uniaxial tension 600 MPa along [100] : 
formation of rod-like precipitates along the loading axis

Uniaxial compression 600 MPa along [100] :
formation of plate-like precipitates perpendicular to the loading axis

- interface energy :

- misfit :


