

2nde partie :

Une dérivation d'un modèle champ de phase par changement d'échelle

A. Finel

LEM, CNRS-ONERA

Modelling : different scales

Macroscopic scale

- domains or phases separated by sharp boundaries
- PDE within the domains
- interface tracking
- \rightarrow free-boundary problems

Mesoscopic scale

- fields are continuous
- interfaces are diffuse
- → Phase field models

Microscopic scale

- atoms are resolved
- two-body (or many-body) forces
- \rightarrow Atomistic models (Dyn. Mol., Monte Carlo...)

Top-down regularisation of sharp interfaces

Bottom-up :

- coarse-graining
- homogenisation
- statistical physics

Modelling : different scales

This course :

Phase Field method : how to get the basic equation ?

How to compute the Ginzburg-Landau free energy ?

Phase Field method: how to get the basic equation (1)

Starting point : a microscopic master equation

- atomic configuration:

$$\mathcal{C} = (\dots p_i \dots p_j \dots) \qquad p_i = 0 \text{ or } 1 \text{ if } A \text{ or } B \text{ on site } i$$

- kinetic model: direct exchange between A and B on 1st neighbor sites

$$\frac{\partial P(\mathcal{C})}{\partial t} = -\sum_{i,j}^{*} W(\mathcal{C} \to \mathcal{C}^{ij}) P(\mathcal{C}) + \sum_{i,j}^{*} W(\mathcal{C}^{ij} \to \mathcal{C}) P(\mathcal{C}^{ij})$$

 $\mathcal{C}^{ij}: \mathcal{C}$ with i and j exchanged

- transition probability:

local mechanism : direct exchange through saddle point (G. Martin, Phys. Rev. B, 1990)

$$W(\mathcal{C} \to \mathcal{C}^{ij}) = \theta \exp{-\beta(2E_{saddle} - h_i^A(\mathcal{C}) - h_j^B(\mathcal{C})) \delta(p_i)\delta(p_j - 1)}$$

 $h_i^A(\mathcal{C})$: interaction energy between site *i* and the other sites if *i* is occupied by atom A if pair interactions only: $h_i^A(\mathcal{C}) = \sum_j V_{ij}^{AA}(1-p_j) + V_{ij}^{AB}p_j$

easy to verify that $\,W\,$ fulfils the detailed balance

$$P_{eq}(\mathcal{C})W(\mathcal{C} \to \mathcal{C}^{ij}) = P_{eq}(\mathcal{C}^{ij})W(\mathcal{C}^{ij} \to \mathcal{C}) \text{ with } P_{eq}(\mathcal{C}) \sim \exp(-H(C)/kT) \quad E(\mathcal{C}) : \text{energy of config. } \mathcal{C}$$

 $\rightarrow P_{eq}(\mathcal{C})$ is a fixed point of the microscopic master equation !

Phase Field method: how to get the basic equation (2)

from:

$$\frac{\partial P(\mathcal{C})}{\partial t} = -\theta \exp(-2\beta E_{col}) \sum_{i,j}^{*} \left(\delta(p_i(\mathcal{C})) \delta(p_j(\mathcal{C}) - 1) \exp(\beta h_i^A(\mathcal{C})) \exp(\beta h_j^B(\mathcal{C})) P(\mathcal{C}) \right) \\
+ (gain term)$$
to:

$$\frac{\partial P(\tilde{\mathcal{C}})}{\partial t} = -\theta \exp(-2\beta E_{col}) \sum_{n,m}^{*} \sum_{i \in n, j \in m}^{*} \operatorname{Tr}_{\mathcal{C}/\tilde{\mathcal{C}}} \left(\delta(p_i(\mathcal{C})) \delta(p_j(\mathcal{C}) - 1) \exp(\beta h_i^A(\mathcal{C})) \exp(\beta h_j^B(\mathcal{C})) P(\mathcal{C}) \right) \\
+ (gain term)$$

Phase Field method: how to get the basic equation (3)

Mesoscopic master equation :

$$\frac{\partial P(\widetilde{\mathcal{C}})}{\partial t} = -\theta \exp(-2\beta E_{col}) \sum_{n,m}^{*} \sum_{i\in n,j\in m}^{*} \operatorname{Tr}_{\mathcal{C}/\widetilde{\mathcal{C}}} \left(\delta(p_i(\mathcal{C})) \delta(p_j(\mathcal{C}) - 1) \exp(\beta h_i^A(\mathcal{C})) \exp(\beta h_j^B(\mathcal{C})) P(\mathcal{C}) \right)$$

+ (gain term)

Need simplification :

if N_{cell} large enough

 $\begin{array}{ccc} \text{microscopic} & & \mathcal{C} \text{ in quasi-equilibrium with } \widehat{\mathcal{C}} & \longrightarrow & \begin{array}{c} \text{mesoscopic} \\ & & \text{slow} \end{array} \end{array}$

$$P(\mathcal{C}) \simeq P(\widetilde{\mathcal{C}}) \ \frac{\exp{-\beta H(\mathcal{C})}}{\operatorname{Tr}_{\mathcal{C}/\widetilde{\mathcal{C}}} \ \exp{-\beta H(\mathcal{C})}}$$

Mesoscopic master equation becomes :

$$\frac{\partial P(\widetilde{\mathcal{C}})}{\partial t} = -\theta \exp(-2\beta E_{col}) \sum_{n,m}^{*} \sum_{i\in n,j\in m}^{*} \langle \delta(p_i(\mathcal{C})) \delta(p_j(\mathcal{C}) - 1) \exp(\beta h_i^A(\mathcal{C})) \exp(\beta h_j^B(\mathcal{C})) \rangle_{\mathcal{C}/\widetilde{\mathcal{C}}} P(\widetilde{\mathcal{C}}) + (\text{gain term})$$

$$\langle X(\mathcal{C}) \rangle_{\mathcal{C}/\widetilde{\mathcal{C}}} = \frac{\operatorname{Tr}_{\mathcal{C}/\widetilde{\mathcal{C}}} X(\mathcal{C}) \exp{-\beta H(\mathcal{C})}}{\operatorname{Tr}_{\mathcal{C}/\widetilde{\mathcal{C}}} \exp{-\beta H(\mathcal{C})}}$$

Phase Field method: how to get the basic equation (4)

Mesoscopic master equation:

$$\frac{\partial P(\widetilde{\mathcal{C}})}{\partial t} = -\theta \exp(-2\beta E_{col}) \sum_{n,m}^{*} \sum_{i\in n,j\in m}^{*} \langle \delta(p_i(\mathcal{C})) \delta(p_j(\mathcal{C}) - 1) \exp(\beta h_i^A(\mathcal{C})) \exp(\beta h_j^B(\mathcal{C})) \rangle_{\mathcal{C}/\widetilde{\mathcal{C}}} P(\widetilde{\mathcal{C}}) + (\text{gain term})$$

→ we introduce a mean field approximation :

$$< f(i \in n) f(j \in m) >_{\mathcal{C}/\widetilde{\mathcal{C}}} \sim < f(i \in n) >_{\mathcal{C}/\widetilde{\mathcal{C}}} < f(j \in m) >_{\mathcal{C}/\widetilde{\mathcal{C}}}$$

transition probability becomes:

 $i \in n, \ j \in m: \ <\delta(p_i(\mathcal{C})) \ \delta(p_j(\mathcal{C})-1) \ \exp(\beta h_i^A(\mathcal{C})) \ \exp(\beta h_j^B(\mathcal{C})) >_{\mathcal{C}/\widetilde{\mathcal{C}}} \sim \ \exp(\beta g_i^A(\widetilde{\mathcal{C}})) \ \exp(\beta g_j^B(\widetilde{\mathcal{C}}))$

with:

$$g_i^A(\widetilde{\mathcal{C}}) = kT \ln < \delta(p_i(\mathcal{C})) \exp \beta h_i^A(\mathcal{C}) >_{\mathcal{C}/\widetilde{\mathcal{C}}}$$
 chemical potential of A "on" site *i*

$$g_j^B(\widetilde{\mathcal{C}}) = kT \ln < \delta(p_j(\mathcal{C}) - 1) \exp \beta h_j^B(\mathcal{C}) >_{\mathcal{C}/\widetilde{\mathcal{C}}}$$
 chemical potential of B "on" site *j*

Phase Field method: how to get the basic equation (5)

 \rightarrow mesoscopic master equation becomes:

$$\frac{\partial P(\widetilde{\mathcal{C}})}{\partial t} = -\theta e^{-2\beta E_{col}} \sum_{n,m}^{*} \sum_{i\in n,j\in m}^{*} e^{\beta g_i^A(\widetilde{\mathcal{C}})} e^{\beta g_j^B(\widetilde{\mathcal{C}})} P(\widetilde{\mathcal{C}}) + (\text{gain term})$$

→ form not suitable, because we cannot expand the exponents..... (chemical potential are not small....)

 \rightarrow chemical potential difference (alloy chemical pot.):

$$\mu_i(\widetilde{\mathcal{C}}) = g_i^B(\widetilde{\mathcal{C}}) - g_i^A(\widetilde{\mathcal{C}})$$

 \rightarrow master equation becomes:

9

Phase Field method: how to get the basic equation (6)

 \rightarrow define average chemical potentials in cells *n*, *m* :

$$\begin{split} g_n^A(\widetilde{\mathcal{C}}) &= \frac{1}{N_{cell}} \sum_{i \in n} g_i^A(\widetilde{\mathcal{C}}) \\ g_n^B(\widetilde{\mathcal{C}}) &= \frac{1}{N_{cell}} \sum_{i \in n} g_i^B(\widetilde{\mathcal{C}}) \\ \mu_n(\widetilde{\mathcal{C}}) &= g_n^B(\widetilde{\mathcal{C}}) - g_n^A(\widetilde{\mathcal{C}}) \end{split}$$

 \rightarrow Then, if spatial variations of chemical potential are small enough :

to the lowest order in *a/d*, we have:

$$\begin{split} i \in n \ , \ j \in m \ : \ g_i^A(\widetilde{\mathcal{C}}) + g_j^A(\widetilde{\mathcal{C}}) &\simeq \ g_n^A(\widetilde{\mathcal{C}}) + g_m^A(\widetilde{\mathcal{C}}) \\ g_i^B(\widetilde{\mathcal{C}}) + g_j^B(\widetilde{\mathcal{C}}) &\simeq \ g_n^B(\widetilde{\mathcal{C}}) + g_m^B(\widetilde{\mathcal{C}}) \end{split}$$

$$i \in n, \ j \in m : \ \mu_i(\widetilde{\mathcal{C}}) - \mu_j(\widetilde{\mathcal{C}}) \simeq \frac{a}{d} \left(\ \mu_n(\widetilde{\mathcal{C}}) - \mu_m(\widetilde{\mathcal{C}}) \right)$$

Phase Field method: how to get the basic equation (7)

 \rightarrow With these 1st order approximations:

$$\begin{split} i \in n \ , \ j \in m \ : \ g_i^A(\widetilde{\mathcal{C}}) + g_j^A(\widetilde{\mathcal{C}}) &\simeq \ g_n^A(\widetilde{\mathcal{C}}) + g_m^A(\widetilde{\mathcal{C}}) \\ g_i^B(\widetilde{\mathcal{C}}) + g_j^B(\widetilde{\mathcal{C}}) &\simeq \ g_n^B(\widetilde{\mathcal{C}}) + g_m^B(\widetilde{\mathcal{C}}) \end{split} \qquad \mu_i(\widetilde{\mathcal{C}}) - \mu_j(\widetilde{\mathcal{C}}) \simeq \ \frac{a}{d} \ (\ \mu_n(\widetilde{\mathcal{C}}) - \mu_m(\widetilde{\mathcal{C}}) \) \end{split}$$

\rightarrow the previous master equation:

$$\frac{\partial P(\widetilde{C})}{\partial t} = -\theta e^{-2\beta E_{col}} \sum_{n,m}^{*} \sum_{i\in n,j\in m}^{*} e^{\frac{\beta}{2}(g_i^A(\widetilde{C}) + g_j^B(\widetilde{C}) + g_j^B(\widetilde{C}))} e^{\frac{\beta}{2}(\mu_j(\widetilde{C}) - \mu_i(\widetilde{C}))} P(\widetilde{C}) + (\text{gain term})$$

\rightarrow becomes:

with:
$$\sum_{i \in n, j \in m}^{*} = \left(\frac{d}{a}\right)^{2} = N_{cell} \frac{a}{d}$$
$$\frac{\partial P(\tilde{C})}{\partial t} = -N_{cell} \frac{a}{d} \theta e^{-2\beta E_{col}} \sum_{n,m}^{*} e^{\frac{\beta}{2}(g_{n}^{A}(\tilde{C}) + g_{n}^{B}(\tilde{C}) + g_{m}^{A}(\tilde{C}) + g_{m}^{B}(\tilde{C}))} e^{\frac{\beta}{2} \frac{a}{d}(\mu_{m}(\tilde{C}) - \mu_{n}(\tilde{C}))} P(\tilde{C})$$
$$+ (gain term)$$
$$mobilities driving force 11$$

Où en étions nous hier ?

 $g_i^A(\widetilde{\mathcal{C}}) = kT \ln < \delta(p_i(\mathcal{C})) \exp \beta h_i^A(\mathcal{C}) >_{\mathcal{C}/\widetilde{\mathcal{C}}}$ $g_j^B(\widetilde{\mathcal{C}}) = kT \ln < \delta(p_j(\mathcal{C}) - 1) \exp \beta h_j^B(\mathcal{C}) >_{\mathcal{C}/\widetilde{\mathcal{C}}}$

$$g_n^A(\widetilde{\mathcal{C}}) = \frac{1}{N_{cell}} \sum_{i \in n} g_i^A(\widetilde{\mathcal{C}})$$
$$\mu_n(\widetilde{\mathcal{C}}) = g_n^B(\widetilde{\mathcal{C}}) - g_n^A(\widetilde{\mathcal{C}})$$

Où en étions nous hier ?

Phase Field method: how to get the basic equation (8)

full mesoscopic master equation :

$$\frac{\partial P(\widetilde{C})}{\partial t} = - N_{cell} \frac{a}{d} \sum_{n,m}^{*} l_{mn}(\widetilde{C}) \exp\left[\frac{\beta}{2} \frac{a}{d} \left(\mu_m(\widetilde{C}) - \mu_n(\widetilde{C})\right)\right] P(\widetilde{C}) + N_{cell} \frac{a}{d} \sum_{n,m}^{*} l_{mn}(\widetilde{C}_{nm}) \exp\left[\frac{\beta}{2} \frac{a}{d} \left(\mu_m(\widetilde{C}_{nm}) - \mu_n(\widetilde{C}_{nm})\right)\right] P(\widetilde{C}_{nm})$$

with :
$$\widetilde{\mathcal{C}}_{nm} = \{.....(c_n - \frac{1}{N_{cell}})....(c_m + \frac{1}{N_{cell}})....\}$$

and mobilities given by :

$$l_{mn}(\widetilde{\mathcal{C}}) = \theta \exp(-2\beta E_{saddle}) \exp\frac{\beta}{2} (g_n^A(\widetilde{\mathcal{C}}) + g_n^B(\widetilde{\mathcal{C}}) + g_m^A(\widetilde{\mathcal{C}}) + g_m^B(\widetilde{\mathcal{C}}))$$

\rightarrow look for a Fokker-Planck equation : Kramers-Moyal expansion to 2nd ordre in 1/N_{cell} !!!

$$\frac{\partial P(\widetilde{\mathcal{C}}))}{\partial t} = N_{cell} \frac{a}{d} \sum_{n,m}^{\star} \left(-\frac{1}{N_{cell}} \frac{\partial}{\partial c_n} + \frac{1}{N_{cell}} \frac{\partial}{\partial c_m} + \frac{1}{2N_{cell}^2} \frac{\partial^2}{\partial c_n^2} + \frac{1}{2N_{cell}^2} \frac{\partial^2}{\partial c_m^2} - \frac{1}{N_{cell}^2} \frac{\partial^2}{\partial c_n \partial c_m}\right) \\ \times \left\{ l_{nm}(\widetilde{\mathcal{C}}) \exp\left[\frac{\beta}{2} \frac{a}{d} \left(\mu_m(\widetilde{\mathcal{C}}) - \mu_n(\widetilde{\mathcal{C}})\right)\right] P(\widetilde{\mathcal{C}}) \right\}$$

 \rightarrow Develop to the lowest order transition probability $\exp\left[\frac{\beta}{2} \frac{a}{d} \left(\mu_m(\widetilde{\mathcal{C}}) - \mu_n(\widetilde{\mathcal{C}})\right)\right]$

→ Fokker-Planck equation

$$\frac{\partial P(\widetilde{C})}{\partial t} = \frac{a^2}{d^2} \left\{ -\sum_n \frac{\partial}{\partial c_n} \left\{ h_n(\widetilde{C}) P(\widetilde{C}) \right\} + \sum_{n,m} \frac{1}{N_{cell}} \frac{\partial^2}{\partial c_n \partial c_m} \left\{ g_{nm}(\widetilde{C}) P(\widetilde{C}) \right\} \right\}$$

$$drift term$$
stochastic term

$$h_{n}(\widetilde{C}) = \sum_{m}^{(n)} l_{nm}(\widetilde{C}) \{ \beta \mu_{m}(\widetilde{C}) - \beta \mu_{n}(\widetilde{C}) \}$$

$$g_{nn}(\widetilde{C}) = \sum_{m}^{(n)} l_{nm}(\widetilde{C})$$

$$g_{nm}(\widetilde{C}) = - l_{nm}(\widetilde{C}) \quad \text{if } n \text{ and } m \text{ are } 1^{st} \text{ neighbors}$$

Phase Field method: how to get the basic equation (11)

→ Equivalent Langevin equation (Ito calculus) :

$$\frac{\partial c_n}{\partial t} = \frac{a^2}{d^2} \frac{1}{kT} \sum_m^{(n)} l_{nm}(\widetilde{\mathcal{C}}) \left(\mu_m(\widetilde{\mathcal{C}}) - \mu_n(\widetilde{\mathcal{C}})\right) + \xi_n(t)$$

Phase Field equation !!!

with multiplicative gaussian noise :

$$\langle \xi_n(t) \rangle = 0$$

$$\langle \xi_n(t) \xi_m(t') \rangle = 2 \frac{a^2}{d^2} \frac{1}{N_{cell}} g_{nm}(\widetilde{\mathcal{C}}) \,\delta(t-t')$$

Phase Field method: how to get the basic equation (12)

\rightarrow Results:

$$\frac{\partial c_n}{\partial t} = \frac{a^2}{d^2} \frac{1}{kT} \sum_{m}^{(n)} l_{nm}(\widetilde{\mathcal{C}}) \left(\mu_m(\widetilde{\mathcal{C}}) - \mu_n(\widetilde{\mathcal{C}})\right) + \xi_n(t)$$

- mobilities:

$$l_{mn}(\widetilde{\mathcal{C}}) = \theta \exp(-2\beta E_{saddle}) \exp\frac{\beta}{2} (g_n^A(\widetilde{\mathcal{C}}) + g_n^B(\widetilde{\mathcal{C}}) + g_m^A(\widetilde{\mathcal{C}}) + g_m^B(\widetilde{\mathcal{C}}))$$

- alloy chemical potential:

$$\mu_n(\widetilde{\mathcal{C}}) = g_n^B(\widetilde{\mathcal{C}}) - g_n^A(\widetilde{\mathcal{C}})$$

- gaussian noise:

$$\langle \xi_n(t) \rangle = 0$$

$$\langle \xi_n(t) \xi_m(t') \rangle = 2 \frac{a^2}{d^2} \frac{1}{N} g_{nm}(\widetilde{C}) \,\delta(t-t')$$

$$g_{nn}(\widetilde{C}) = \sum_{m}^{(n)} l_{nm}(\widetilde{C})$$

$$g_{nm}(\widetilde{C}) = - l_{nm}(\widetilde{C}) \quad \text{if } n \text{ and } m \text{ are } 1^{st} \text{ neighbors}$$

 \rightarrow Cahn-Hilliard type equation, but with :

- multiplicative Langevin noise
- cell-size dependant quantities: mobility, chem. potentials, amplitude of noise term

How to get the chemical potentials ?

 \rightarrow Chemical potentials $g_n^A(\widetilde{C})$ and $g_n^B(\widetilde{C})$ are function of all the cell concentrations c_n :

$$g_n^A(\tilde{\mathcal{C}}) = g_{homo}^A(c_n) + H^A(c_n) ||\hat{\nabla}c_n||^2 + K^A(c_n)\hat{\nabla}^2c_n + \dots$$

 $\rightarrow g_n^A(\widetilde{\mathcal{C}})$ and $g_n^B(\widetilde{\mathcal{C}})$ enter into the mobilities and in the alloy chemical potential :

$$l_{mn}(\widetilde{\mathcal{C}}) = \theta \exp(-2\beta E_{saddle}) \exp\frac{\beta}{2} (g_n^A(\widetilde{\mathcal{C}}) + g_n^B(\widetilde{\mathcal{C}}) + g_m^A(\widetilde{\mathcal{C}}) + g_m^B(\widetilde{\mathcal{C}}))$$
$$\mu_n(\widetilde{\mathcal{C}}) = g_n^B(\widetilde{\mathcal{C}}) - g_n^A(\widetilde{\mathcal{C}})$$

 \rightarrow If cells large enough : inhomo. components can be neglected in mobilities, but are crucial in the alloy chem. potential

- for the mobilities:

$$g_n^A(\widetilde{\mathcal{C}}) \simeq g_{homo}^A(c_n)$$

- for the alloys chemical potential:

$$\mu_n(\widetilde{\mathcal{C}}) \simeq g^B_{homo}(c_n) - g^A_{homo}(c_n) + H(c_n) ||\hat{\nabla}c_n||^2 + K(c_n)\hat{\nabla}^2 c_n +$$

How to get the chemical potentials (cont.) ?

 \rightarrow Numerical procedure for homogeneous chemical potentials $g^A_{homo}(c_n)$ and $g^B_{homo}(c_n)$

Widom-like method by Monte Carlo on a single cell

 \rightarrow Numerical procedure for the inhomogeneous component of $\mu_n(\mathcal{C})$

we expect
$$F_{tot}(\widetilde{\mathcal{C}}) = N_d \sum_n \{f_{homo}^d(c_n) + \frac{1}{2}\lambda^d(c_n)||\hat{\nabla}c_n||^2\}$$
 with

$$\mu_n^d(\widetilde{\mathcal{C}}) = \mu_{homo}^d(c_n) - \lambda^d(c_n)\hat{\nabla}^2 c_n + \frac{1}{2}\frac{\partial\lambda^d(c_n)}{\partial c_n}||\hat{\nabla}c_n||^2$$

 \rightarrow Procedure for $\lambda^d(c_n)$: gaussian fluctuations between cells

 $\mu_n(\widetilde{\mathcal{C}}) = \frac{1}{N_d} \; \frac{dF_{tot}(\mathcal{C})}{dc_n},$

$$C_{1}$$

$$C_{2}$$

$$C_{3}$$

$$C_{2}$$

$$C_{3}$$

$$C_{2}$$

$$C_{3}$$

19

thus :

How to get the chemical potentials (cont.) ?

simple cubic lattice

 \rightarrow Simple cubic lattice, 1st neighbor interactions J1

$$H = \frac{1}{2} \sum_{n,m} \sigma_n \sigma_m \qquad \sigma_n = +/-1 \qquad T_c \sim 4.51 J_1$$

 \rightarrow chemical potential : homogeneous part $\,\mu^d_{homo}(c)\,$ by Monte Carlo on a single cell + fit

$$\mu_d(c) = 2pJ_1(2c-1) + Ac(1-c)(c-0.5)\{1 + B(c-0.5)^2\} + kT \ln \frac{c}{1-c}$$

Free energies as a function of the coarse-graining size

simple cubic lattice

phase diagram for infinite system

Free energies as a function of the coarse-graining size (cont.)

simple cubic lattice

 \rightarrow How to get the stiffness coefficient $\lambda^d(c)$?

$$F_{tot}^{d}(\{c_n\}) = \sum_{n} \{ f_{homo}^{d}(c_n) + \frac{\lambda_d}{2} ||\tilde{\nabla}c_n||^2 \}$$

\rightarrow if "gaussian" fluctuations :

- small fluctuations around the average concentration : \bar{c} $\delta c_n = c_n - \bar{c} \ll \bar{c}$

$$\sum_{n} \delta c_n = 0 \quad \longrightarrow \quad F_{tot}^d(\{c_n\}) = \sum_{n} \{ f_{homo}^d(\bar{c}) + \frac{1}{2} f''(\bar{c}) \, \delta c_n^2 + \frac{\lambda_d}{2} \, ||\tilde{\nabla} c_n||^2 \}$$

- Fourier modes:

$$\delta c(q) = \frac{1}{N_{cell}} \sum_{n} \delta c_n \exp{-iq.R_n}$$

$$F_{tot} \sim cte + \frac{1}{2} \sum_{q \neq 0} \{ \tilde{f}''(\bar{c}) + \lambda_d q^2 \} ||\delta c(q)||^2$$

- équipartition:

$$<||\delta c(q)||^2>=\frac{kT}{\tilde{f}''(\bar{c})+\lambda_d q^2}$$

 \rightarrow How to get the stiffness coefficient $\lambda^d(c)$ (cont.) ?

 \rightarrow simple method to calculate λ_d :

\rightarrow How to get the stiffness coefficient $\lambda^d(c)$ (cont.) ?

- kT / J1 = 4
- cell size: d = 8

С	λ_d	$ ilde{f}^{\prime\prime}(ar{c})$	$rac{\partial \mu_d(ar c)}{\partial ar c}$
0.065	0.62 ± 0.01	32.9 ± 0.1	33.23
0.075	0.60 ± 0.01	25.6 ± 0.1	25.80
0.085	0.59 ± 0.01	20.0 ± 0.1	20.27
0.095	0.57 ± 0.01	15.7 ± 0.1	16.05
0.105	0.54 ± 0.01	12.3 ± 0.1	12.75
0.115	0.52 ± 0.02	9.70 ± 0.1	10.13
0.125	0.50 ± 0.01	7.54 ± 0.1	8.04

 λ_d varies with $\bar{c} \to \lambda_d(\bar{c}) \parallel \parallel$

 \rightarrow How to get the stiffness coefficient $\lambda^d(c)$ (cont.) ?

 \rightarrow To the lowest order, symmetry implies:

$$\lambda_d(\bar{c}) = A + B \ \bar{c}(1 - \bar{c})$$

All together !!!

 \rightarrow Inhomogeneous Ginzburg-Landau free energy :

$$F_{tot}^{d}(\{c_n\}) = \sum_{n} \{ f_{homo}^{d}(c_n) + \frac{\lambda_d(c_n)}{2} ||\tilde{\nabla}c_n||^2 \}$$

 \rightarrow Inhomogeneous chemical potential :

$$\mu_{d}^{inhomo}(\{c_{n}\}) = \frac{\delta F_{tot}^{d}(\{c_{n}\})}{\delta c_{n}} = \mu_{d}^{homo}(c_{n}) - \lambda_{d}(c_{n})\tilde{\nabla}^{2}c_{n} + \frac{1}{2}\frac{\partial\lambda_{d}(c_{n})}{\partial c_{n}}||\tilde{\nabla}c_{n}||^{2}$$

$$Monte Carlo coarse-graining: (gaussian) fluctuations: between cells$$

 \rightarrow Continuous limit of kinetic equation (not needed...) :

$$\frac{\partial c}{\partial t} = \nabla M(c) \,\vec{\nabla} \{ \, \mu_d(c) \, - \, \lambda_d \, \nabla^2 c \, + \, \frac{1}{2} \frac{\partial \lambda_d(c)}{\partial c} ||\tilde{\nabla} c||^2 \} \, + \, \eta(r,t)$$

with a mobility $M_d(c)$:

"new" inhomogeneous term

$$M_d(c) = \theta a^2 \exp -2\beta E_{saddle} \exp \beta (g_d^A(c) + g_d^B(c))$$

and Langevin noise :

$$\langle \eta(r,t) | \eta(r',t') \rangle = -2 kT \nabla M(c) \nabla \delta(r-r') \delta(t-t')$$

 \rightarrow coarse-grained free energy (chemical potential) from Monte Carlo (d = 8) and kT = 4 J1:

• \rightarrow precipitation for c = 0.17 ($c_0 < c < c_s$): nucleation and growth mechanism....

PSD

Comparaison with classical nucleation theory

 \rightarrow Incubation time as a function of sursaturation $(c - c_0)$

$$\tau \sim (c - c_0)^{-\alpha}$$
 $\alpha \simeq 4.8 \pm 0.1$ $CNT : \alpha = 4$

On the influence of the coarse-graining size

Volume fraction of the precipitates

Conclusion

a Phase Field model by coarse-graining...

- generates simultaneously a coarse-grained GL free energy and a coarse-grained CH kinetics
- a stochastic equation with a multiplicative noise term (with a fluctuation theorem)
- Mobility M(c) and noise correlations depend on coarse-graining size and on local concentration
- \mathbb{G} "stiffness" constant $\lambda^d(c)$ depend on coarse-graining size and on local concentration

reproduces equilibrium fluctuations as well as precipitation