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Introduction
Consider an elastic body subjected to forces and boundary conditions.

Cohesive models: fracture energy is gradually released with the growth of
the crack opening (progressive weakening of the bound between the lips)

Failure process of a porous adhesive joint in opening mode fracture [Zhu-Liechti-Ravi-Chandar '09]

[Del Piero-Truskinovsky '98, Francfort-Marigo '98, Braides-Dal Maso-Garroni '99, Alicandro-Braides-Shah '99, Alicandro- Focardi '01, Dal
Maso-Zanini '07, Bourdin-Francfort-Marigo '08, Dal Maso-Garroni '08, Cagnetti-Toader '11, Larsen-Slastikov '14, Conti-Focardi-lurlano
'16, Dal Maso-Orlando-Toader '16, Crismale-Lazzaroni-Orlando '16, Larsen-Li '16, Negri-Scala '17 & '20, Thomas-Zanini '17, Negri-Vitali
'18, Bonacini-Conti-lurlano '21,...]
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Cohesive fracture: scalar sharp model

Static scalar cohesive energy [Dugdale '60, Barenblatt '62]:

F(u) ;:/ |V ul?dx +/ gecal(|[L])dHIE, u e SBV(Q),
Q\J, Ju

stored elastic energy crack energy

Q C RY reference configuration
Ju C Q crack, (d-1)-dimensional
u:Q\ J, — R elastic displacement
[u] : Jy — R amplitude of the crack
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Cohesive fracture: scalar sharp model

Static scalar cohesive energy [Dugdale '60, Barenblatt '62]:

F(u) = / Vuldx + / aen(l)dHe, we SBV(Q),
Q\J, Jy

stored elastic energy crack energy

Oc

[[u]]

with o 1= gs/cal(o) € (07+OO) and v := gscal(+oo)-
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Relaxed formulation

We will deal with global minima, but F does not attain its infimum.
Introduce the [!-relaxation Fy, of F (defined on GBV/(Q)):

Fea(w):= [ huca| Vi) it | gl JaH "+ ac|DCu|(fz)J

With hseal(s) := (52 A 0c5)®™; gecal and o are as before.

4/29



Relaxed formulation

We will deal with global minima, but F does not attain its infimum.
Introduce the [!-relaxation Fy, of F (defined on GBV/(Q)):

Froa(u):= /Q heeat([V1]) dx+ /J (|l ¢ ac|DCu|(Q)J

with heeal(s) := (5% A 0¢5)®™; gecal and o are as before.
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Brittle fracture: scalar sharp and phase-field models
Ambrosio-Tortorelli '92: for u,v € H}(Q), 0 < v < 1, consider
Y
FAT (u,v) := / <v2|Vu|2 + 72 <(146V) + 5|Vv|2>) dx.
Q

As 0 — 0, AT '-converges in L1xL! to

MS(u) ::/Q\Vulzdx—l—ﬁ/”;'-[d’l(Ju), J

if ue GSBV(Q2) and v =1 ae..

Convergence of minimum problems hold.

Numerical simulations: [Bourdin-Francfort-Marigo '00, Bourdin '07, Del Piero-Lancioni-March '07,
Negri '07, Amor-Marigo-Maurini '09, Lancioni-Royer Carfagni '09, Freddi-Royer Carfagni '10,
Schmidt-Fraternali-Ortiz '11, Bourdin-Larsen-Richardson '11, Borden-Verhoosel-Scott '12,
Ambati-Gerasimov-De Lorenzis '15,. . .]
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Brittle vs cohesive: scalar phase-field models

Ambrosio-Tortorelli '92 model: § > 0 small, toughness

FAT( o 2 17 y)2 2 (1—V)2 SIVvI2 d
)= [ (2T 4 (S oV ) ox

Conti-Focardi-F.I. "16 model: § > 0 small, toughness ~y, critical stress o,

Fscal( L £ 2 2 (1 B V)2 2
S (u, v) = 5(v)° |Vul“+ B 2 + Co|Vv|” ) dx.
Q
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Brittle vs cohesive: scalar phase-field models

Ambrosio-Tortorelli '92 model: § > 0 small, toughness

FAT( o 2 17 y)2 2 (1—V)2 SIVvI2 d
)= [ (2T 4 (S oV ) ox

Conti-Focardi-F.I. "16 model: § > 0 small, toughness ~y, critical stress o,

Fscal( L £ 2 2 (1 B V)2 2
S (u, v) = 5(v)° |Vul“+ B 2 + Co|Vv|” ) dx.
Q

2

fs(v)? = 1 A L\:, v:=vBC, o.:=VAB.
(1-v)
~— N—_——

elastic phase  pre-fracture phase
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Convergence to the cohesive sharp model

Theorem (Conti-Focardi-F.l. "16). For u,v € H(Q),0< v <1, let

Fscal o e 2v 2 B(].—V)2 C5V 2 d
S u,v) = A 5(v)7 | Vul® + Y; + Co|Vv|® | dx.

As § — 0, F§= T-converges in L1xL! to

Fr(u) == /Q heeat(|V u])dx+ /J e[ )AH* o D0l (@)

if ue GBV(Q) and v =1 a.e; hea(s) = (s> A ges)®™ for s € Ry,
8scal IS given by a cell formula (see later).
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Convergence to the cohesive sharp model

Theorem (Conti-Focardi-F.l. '16). For u,v € H}(Q),0< v <1, let
scal 2 2 (1 B V)2 2
F5(u,v) = fs(v)7|Vul® + BT + Co|Vv|® ) dx.
Q

As § — 0, F§= T-converges in L1xL! to

Fr(u) == /Q heeat(|V u])dx+ /J ([l JAH 0 Dl (@)

if uc GBV(Q) and v =1 ae; hea(s) = (s> Aaes)®" forseRy;
8scal IS given by a cell formula (see later).

Convergence of minimum points and values holds (adding a penalization
or boundary conditions).

[Alternative approaches: Alicandro-Braides-Shah '99, Dal Maso-Orlando-Toader '16]
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Numerical tests: the displacement

1D tests [Freddi-F.l. '16] when Q =[0,1], A=B=C=1.

u(x)

Bar in traction. Distributions of displacement u and of damage v along the bar
for different values of the imposed displacement, in the case
f5(v) := min{1,6v?/(1 — v)?}.
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Numerical tests: the surface energy

1D tests [Freddi-F.l. '16] when Q =[0,1], A=B=C=1.

I

o([u)

T4—

Bar in traction. Left: graph of the cohesive energy density gscai([u]). Right:
stress o as a function of the imposed boundary displacement, for different
values of the small parameter 0.
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Vectorial phase-field models: isotropic potential

The simplest model [Conti-Focardi-F.l., in preparation]:

for (u,v) € HY(Q, R™ x [0,1]), let

. 1 — 2
Fs(u,v) = /Q (f;;(v)2 |Vu|2 + (45‘/) + (5|Vv|2) dx,

recalling that (with A=B=C=1)

fs(v)? := 1A OF(v)?, f(v)? =
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Convergence to the sharp model
Theorem (Conti-Focardi-F.l. in preparation). It holds
r(LY)- gimo]-'(s(u, v) = F(u,v), (u,v)e }(Q,R™?),
—

where

Fluv):= [ W(Tu)dx+ | gealllul) a2 +(0ul(@).

if ue (GBVNLY Q)™ and v=1ae.
Here,

h(€) = |2 A ], for & € R™*

h3<(€) = inf{ h(¢ + Vp)dx: ¢ € C2°((0,1)¢,R™)}.
(0,1)7
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Convergence to the sharp model
Theorem (Conti-Focardi-F.l. in preparation). It holds
r(LY)- gimo]is(u, v) = F(u,v), (u,v) e }(Q,R™1),
—

where

Fluv):= [ W(Tu)dx+ | gealllul) a2 +[0ul(@).

if ue (GBVNLY Q)™ and v=1ae.
Here,

h(€) == [€* A €|, for & € R™

It can be proved that h9€ is not convex:

hqc(g) = hsca|(|§|)a if |§| < % or rank§ <1,
hscal(|€]) < h9°(€) < |€], otherwise.
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For s € R, the surface energy gyl is given by the asymptotic formula

7 1— )2
Gscal(s) = 'lriTToinf/_I (f(v)2‘u/|2 4 (4‘/) + |v'|2>dx,

where the inf is taken over all (u,v) € HY( [-T/2, T/2],R x [0,1] ) with

u(—=T/2)=0, u(T/2)=s, v(£T/2)=1.

Here the surface energy is 1D, in the sense that it involves 1D profiles
(u,v). This is due to the fact that F5 depends on Vu through

the “sliceble” potential | - |? .
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Vectorial phase-field models: a general potential

Geometrically nonlinear framework [Conti-Focardi-F.I., in preparation]:
for (u,v) € HY(Q,R™ x [0,1]), let

Fs(u,v) = /

Ja 46

<f5(V)2 V(Vu) + M -+ 5Vv2> dx,

where W: R™<9 — [0, 00) is continuous and satisfies
1
(ZIEP =) VO < W(E) < c(jgf +1), for all ¢ € R™".

Recall that

fs(v)2:=1A (with A=B=C=1).

(1-v)?
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Convergence to the sharp model

Theorem (Conti-Focardi-F.l. in preparation). It holds

r(Ll)-mﬁ;(m v) = F(u,v), (u,v)eL}(QR™1),

where

Flu,v) = /Q hi(Vu) dx +/ g([u], vy) dHe1 + /Q h9>°(dD u),

Ju

ifue (GBVNLYQ)™and v=1ae.
Here,

h:=WAWY/2

h(§) = inf{ o h(€ + V)dx: p € C((0,1)7,R™)}
0,1)¢

h3°°(€) := limsup w.
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The limit energy g involves vectorial profiles: for (z,v) € R™ x §9-1

g(z,v) = lim |nf — 1 (U, v, Q)

T—o0

Fo(u, v, Q%) ::/¥(f(v)2 V. (Vu) + (174‘/)2 + |Vv|2)dx

where the inf is taken over all (u,v) € H( Q%,R™ x [0,1] ) with

U= (ZX{xv>01) ¥ P V= X{|xv|22} * P on 9QY.

Here ¢ is a mollifier and V(&) := lim; o0 % (assumed uniformly).

[Related results: Focardi '01, Alicandro-Focardi '02]
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Properties of g(z,v)

For some ¢ > 0 and all z,z;,z2 € R™, v € S971, it holds

@ optimal profiles are vectorial and satisfy

(Ll, V) = (ZX{X-V>0}7 1)v on {X V= i—,_/2}

@ optimal profiles are periodic in the directions orthogonal to v
@ growth:
1
(121 A1) < g(z,0) < iz A1)
@ subadditivity:
g(21 + 227V) < g(Z]_7V) +g(227l/)

@ regularity:
g e CO(R™ x §971)
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Numerical experiments in 2D [Freddi-F.I. '16]
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The time-dependent problem

Let the boundary data evolve with the time. Of course the energy

Fu) ::/Q |Vu|2dx—|—/J o ([l

u

does not depend on time, it is completely static. The dependence on
time is related to the choice of the irreversibility condition.

(Hard) problems:
@ to construct a quasi-static evolution for the cohesive sharp model
without prescribing the crack path;

@ to prove a phase-field approximation of such evolution.
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Time-dependence in the brittle case

Let ug [resp. (uo, vo)] be a known minimum point at time ty under some
b.c.. How to define u [resp. (u,v)] at time t > t; under a new b.c.?

o brittle sharp (Mumford-Shah) case: Iy := J,, and
take u minimizing: z / |Vz|2dx +HI(J,\ To), (1)
Q

[:=J,UTly,

construction of quasistatic ev.: [Dal Maso-Toader '02, Chambolle '03,
Francfort-Larsen '03, Dal Maso-Francfort-Toader '05, Knees-Mielke-Zanini '08,
Dal Maso-Lazzaroni '10, Lazzaroni '11, Friedrich- Solombrino '17,. ]

o brittle phase-field (Ambrosio-Tortorelli) case:
take (u,v) minimizing:  (z,w) — F{T(z,w), w<w; (2)

construction + convergence to sharp as 4 — 0: [Giacomini '05].
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Time-dependence in the cohesive case

Let ug [resp. (uo, vo)] be a minimum point at time tp under some b.c..
How to define u [resp. (u, v)] at time t > t, under a new b.c.?

@ cohesive sharp case with prescribed crack path I': take (u, ) min:

(z,8) = F(2) + /ré(l[ZH,ﬂ)d’Hd_l, B 2wl (3)

Several choices for &: [Dal Maso-Zanini '07, Cagnetti-Toader '11]; see also
[Larsen—SIastikov '14, Larsen-Li '16, Almi '17, Artina-Cagnetti-Fornasier-
Solombrino '17, Negri-Scala '17 & '20, Thomas-Zanini '17, Negri-Vitali '18,
Crismale-Lazzaroni-Orlando '18,. . .].

@ cohesive phase-field (Conti-Focardi-F.l.) case: we could keep
w < vp, but how to relate it to a g in the limit? [still open]
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Quasi-static evolution in 1D: surface energy

[Bonacini-Conti-F.l. '21]: 1D and crack not prescribed .
The energy spent during the loading might be partially recovered during the
unloading.

g(s)
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Quasi-static evolution in 1D: surface energy

Let g: [0, +00) X [0, +00) — [0,400) be
@ loading/unloading: continuous, nondecreasing in each variable and
g(s,s') = g(s,0) if s > ¢;

@ behavior at oo: g(s,s’) <1 and lims 400 8(s,s") =1 for any s';
e behavior at 0: there exist £,/ > 0 and 1 < p < 2 such that

2(s,0) = ls — IsP + o(sP) ass — 07
@ subadditivity: for every s;,s,s" >0,
g(sl + S, Sl) S g(51,0) + 5(52, 5/) ;

if in addition s; > 0 and s, V s’ > 0, the inequality is strict.
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As in the static case, in order to make the minimization well-posed, we
have to relax functional (3). We consider a bar Q := [0, 1] in traction; for

b:[0,T] —+ R?> (=boundary conditions)
I C[0,1] (=cracks at previous times)
s: [ — (5,+00) (=maximal amplitudes at previous times)
5>0 (=reversibility threshold)

we would like to iteratively minimize

o(u;T, s) /hsca, W)dx+ Y &([ull,s) + ¢|Du|(0,1)

xeJbur

among v attaining boundary conditions. Here hg,(2) := (2% A £z)<™.
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The time-discrete (sharp) cohesive evolution

We construct a time-discrete evolution for ®, corresponding to data

b € HY([0, T],R?) and penalization w € AC([0, T],L>((0,1))). We fix a

reversibility threshold 5 > 0 and a time step 7 > 0,
0=to<t1<"'<tNT+1= T.

Step 0: select a solution uj of the minimum problem

1
min {Fsca|(u) + / |u— WOT\2dX : ue BV((0,1)), b.C.} )
Jo
Set

Mo ={xedyg: llwl) >3}, s5(x) = I[[ug](x)I-
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Step k: assume to have constructed u] € BV((0,1)), I'T C [0,1]
(finite), and s7 : (5, +0o0) for i < k — 1. Select a solution uf of the
minimum problem

-1
min{q>(u; r;,l,s;,1)+/ lu—w] ,|?dx: ue BV((0,1)), b,c.}.
0

Set
M=r_,u{xe Jup [[uf]l(x)] >3 },
,7(' = SI‘I(——l \% |[UZ]| in rz—lv
[zl in TR\ Ty

Note: it turns out that '] is finite (J,; is not) and uf € SBV((0,1)).
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The time-continuous (sharp) cohesive evolution

We want to pass to the limit as the time-step tends to 0. Fix 7, — 0 and
O=tg <ty <---<ty,1=T.

Let

t (un(t) := ur, (t), Ta(t) == T4, (1), sa(t) == s, (1)), for t € [0, T],

be the piecewise constant interpolation of the time-discrete evolution.

Threshold s + strict subadditivity of § = #I,(t) < ¢ uniformly
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Quasi-static evolution in 1D (crack not prescribed)

Theorem (Bonacini-Conti-F.I. "21) For all t € [0, T], there exist
u(t) € BV((0,1)), I'(t) C [0,1] finite, s(t) : [(t) — [5,00), such that

o (initial condition) ug := u(0) minimizes on BV/((0,1)), b.c.,

Fsca|(v) + HV - W(O)H;
and Iy = {|[uo]| > 5}, so = [[uo]l;

o (irreversibility) (t1) C I'(t2) and s(t1) < s(t2) for t; < to;
e (memory) for t >0,

{x € Jug : u(@)]] > 5} < T(2) C{[[u(D)]] < s(2)};
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Quasi-static evolution in 1D (crack not prescribed)

o (static equilibrium) for t > 0, u(t) minimizes on BV((0,1)), b.c.,
E(v, t) i= &(v;T(t), s()) + [lv — w(t)|I3;

o (non-dissipativity) the total energy £(t) := E(u(t), t) satisfies

() =€ 0)+/ / V)b +2(u — w)(b— ) ) dr.
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Irreversibility in the phase-field model

Ambrosio-Tortorelli: vs ~ 0 on the jump;
Conti-Focardi-F.l.: v; reaches a value depending on |[u]| on the jump.

Key facts: for x € J, with amplitude s := [[u](X)| we have:

@ g.al(s) has a unique optimal profile 35 for the damage variable;

@ in particular mg := miﬂrg Bs(t) is determined by the opening s;
te

@ a recovery sequence vgs blows up towards (s around X.

This suggests to impose irreversibility through a monotonicity constraint
on the minima of vg.
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Irreversibility in the phase field model

[Bonacini-Conti-F.I. '21]: Fix a finite set [ C [0,1] and s’ : T — (0, o0)
(pre-existing crack and amplitude). We have

Fs(u,v) := F§<¥(u, v), if v(x) <mgyonT,

Fa() & 0(u) = [ b+ 3 &1 <) + 1D%ul((0. 1),

xelfud,

for u € BV((0,1)), where

+oo 1—7 2
g(s, s’ )= inf/ (f2(0)|ﬁ’|2+( 4") + V’|2)dt,

(0,7) as for gecal + inf¥ < mg .
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...thank you for your attention!
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