École d'été de mécanique théorique à Quiberon (9 sept. 2022)

Homogenization-based interpolation of material properties for phase-field models

NAVIER

Sébastien Brisard

Univ Gustave Eiffel, Ecole des Ponts, CNRS, Navier, F-77454 Marne-la-Vallée, France

Samuel Forest, Kais Ammar

MINES ParisTech, PSL University, MAT - Centre des matériaux, CNRS, BP 87 91003 Evry, France

Free energy

Decomposition of the free energy

$$f(\phi, \nabla \phi, c, \mathbf{\epsilon}) = f_{\phi}(\phi, \nabla \phi) + f_{c}(\phi, c) + f_{el}(\phi, \mathbf{\epsilon})$$

Contribution of interface

$$f_{\phi}(\phi, \nabla \phi) = \frac{3\gamma}{\ell} [W(\phi) + \ell^2 ||\nabla \phi||^2] \quad \text{with} \quad W(\phi) = \phi^2 (1 - \phi)^2$$

Chemical & mechanical contributions

$$\begin{cases} f_c(\phi, c) \\ f_{\varepsilon}(\phi, \mathbf{\epsilon}) \end{cases} \quad \text{such that} \quad \begin{cases} f_c(0, c) = f_c^0(c) \\ f_{\varepsilon}(0, \mathbf{\epsilon}) = f_{\varepsilon}^0(\mathbf{\epsilon}) \end{cases} \quad \text{and} \quad \begin{cases} f_c(1, c) = f_c^1(c) \\ f_{\varepsilon}(1, \mathbf{\epsilon}) = f_{\varepsilon}^1(\mathbf{\epsilon}) \end{cases}$$

Properties of the transition zone

- (Fictitious) "mixture" of the two pure phases
- Properties classically interpolated between pure phases [1]
- Voigt/Reuss estimates [2–4] from theory of generalized standard materials [5]
- Laminate theory in finite elasticity [6] from variational approach
- Is it possible to introduce more general homogenization models?
- What would be the gain? → Thermodynamical consistency vs. quality of numerical solution ?
- [1] A. G. Khachaturyan, Theory of Structural Transformations in Solids, Dover ed, Dover Publications, Mineola, N.Y, 2008.
- [2] K. Ammar et al., European Journal of Computational Mechanics 2009, 18, 485–523.
- [3] K. Ammar, PhD thesis, École Nationale Supérieure des Mines de Paris, 2010.
- [4] K. Ammar et al., Philosophical Magazine Letters 2011, 91, 164–172.
- [5] B. Halphen, Q. Son Nguyen, Journal de Mécanique 1975, 14, 39–63.
- [6] J. Mosler, O. Shchyglo, H. Montazer Hojjat, Journal of the Mechanics and Physics of Solids 2014, 68, 251–266.

Digression: incompressible binary fluids

"Density-matched" fluids

The first case considered [1, 2]. When $\rho_0 = \rho_1$, $\rho(\phi) = \rho_0 = \rho_1$ is suitable and the mixture is incompressible: $\nabla \cdot \mathbf{u} = 0$ everywhere.

Fluids with density contrast

$$\rho(\phi) = (1 - \phi)\rho_0 + \phi\rho_1$$

 $\nabla \cdot \mathbf{u} = 0$ no longer holds! See refs [3, 4].

Interpolation scheme requires some thinking!

- [1] D. Jacqmin, Journal of Computational Physics 1999, 155, 96–127.
- [2] V. E. Badalassi, H. D. Ceniceros, S. Banerjee, Journal of Computational Physics 2003, 190, 371–397.
- [3] H. Ding, P. D. M. Spelt, C. Shu, Journal of Computational Physics 2007, 226, 2078–2095.
- [4] H. Abels, H. Garcke, G. Grün, Mathematical Models and Methods in Applied Sciences 2012, 22, 1150013.

Towards homogenization

- Transition zone as a two-phase, heterogeneous material
- (1ϕ) and ϕ : "volume fractions" of phases 0 ($\phi = 0$) and 1 ($\phi = 1$)
- Localization: $c \mapsto c_0, c_1$ and $\mathbf{\epsilon} \mapsto \mathbf{\epsilon}_0, \mathbf{\epsilon}_1$
- Only the "macroscopic" variables c and ε are state variables!
 (c₀, c₁, ε₀ et ε₁ are not state variables)

Outline

- A (very brief) overview of random homogenization [1]
- Application to phase-field models

[1] A. Zaoui, Journal of Engineering Mechanics 2002, 128, 808–816.

A (very brief) overview of random homogenization

Separation of scales

 $L_{\mu} \ll L_{\rm m} \ll L_{\rm M}$

Source: Structurae, BGEA Labo and Aménagements Déco Lafarge

S. Brisard — Homogenization-based interpolation for phase-field models — École d'été de mécanique théorique à Quiberon (9 sept. 2022)

Top-down (experimental) characterization

Macroscopic variables

- Macro. stress: *F*/*A*
- Macro. strain: δ/L

Compression test on a concrete sample (Courtesy S. Bahafid, S. Ghabezloo)

Bottom-up (numerical) prediction

- The corrector problem reproduces physical experiment in-silico!
- The virtual sample is the so-called representative volume element (RVE)
- No body forces, loading through boundary conditions

Field equations

Boundary conditions

Must satisfy the Hill–Mandel condition

$$\nabla_{\mathbf{x}} \cdot \boldsymbol{\sigma} = \mathbf{0}$$
$$\boldsymbol{\sigma}(\mathbf{x}) = \mathbf{C}(\mathbf{x}) : \boldsymbol{\varepsilon}(\mathbf{x})$$
$$\boldsymbol{\varepsilon} = \nabla^{\mathsf{s}} \mathbf{u}$$

$$\langle \sigma : \epsilon \rangle = \langle \sigma \rangle : \langle \epsilon \rangle$$

Example: homogeneous strain boundary conditions

$$\mathbf{u}(\mathbf{x}) = \overline{\mathbf{\epsilon}} \cdot \mathbf{x} \quad \Rightarrow \quad \langle \mathbf{\epsilon} \rangle = \overline{\mathbf{\epsilon}}$$

Effective properties

Formal definition

From the linearity of the corrector problem

$$\langle \sigma \rangle = C^{\text{eff}} : \overline{\epsilon} = C^{\text{eff}} : \langle \epsilon \rangle$$

Macroscopic energy: from the Hill-Mandel condition

$$\frac{1}{2} \langle \boldsymbol{\varepsilon} : \boldsymbol{\mathsf{C}} : \boldsymbol{\varepsilon} \rangle = \frac{1}{2} \langle \boldsymbol{\sigma} : \boldsymbol{\varepsilon} \rangle = \frac{1}{2} \langle \boldsymbol{\sigma} \rangle : \langle \boldsymbol{\varepsilon} \rangle = \frac{1}{2} \big(\boldsymbol{\mathsf{C}}^{\mathsf{eff}} : \langle \boldsymbol{\varepsilon} \rangle \big) : \langle \boldsymbol{\varepsilon} \rangle$$

To sum up

$$\langle \boldsymbol{\epsilon} \rangle = \overline{\boldsymbol{\epsilon}} \qquad \langle \boldsymbol{\sigma} \rangle = \boldsymbol{\mathsf{C}}^{\text{eff}} : \langle \boldsymbol{\epsilon} \rangle \qquad \frac{1}{2} \langle \boldsymbol{\epsilon} : \boldsymbol{\mathsf{C}} : \boldsymbol{\epsilon} \rangle = \frac{1}{2} \langle \boldsymbol{\epsilon} \rangle : \boldsymbol{\mathsf{C}}^{\text{eff}} : \langle \boldsymbol{\epsilon} \rangle$$

The strain localization operator

The corrector problem is linear

 $\boldsymbol{\epsilon}(x) = \boldsymbol{\mathsf{A}}(x): \overline{\boldsymbol{\epsilon}}$

Minor symmetries but not major symmetry!

Effective stiffness from macroscopic stress (symmetry?)

$$C^{\text{eff}}: \overline{\epsilon} = \langle \sigma \rangle = \langle C : A \rangle : \overline{\epsilon} \quad \Rightarrow \quad C^{\text{eff}} = \langle C : A \rangle$$

Effective stiffness from macroscopic energy (symmetry!) $\overline{\epsilon} : C^{\text{eff}} : \overline{\epsilon} = \langle \epsilon : C : \epsilon \rangle = \overline{\epsilon} : \langle A^{\top} : C : A \rangle : \overline{\epsilon} \implies C^{\text{eff}} = \langle A^{\top} : C : A \rangle$

12

The case of eigenstrained materials

The corrector problem

$$\begin{aligned} \mathbf{x} \in \Omega : & \begin{cases} \nabla_{\mathbf{x}} \cdot \boldsymbol{\sigma} &= \mathbf{0} \\ \boldsymbol{\sigma}(\mathbf{x}) &= \mathbf{C}(\mathbf{x}) : \begin{bmatrix} \boldsymbol{\epsilon}(\mathbf{x}) - \boldsymbol{\eta}(\mathbf{x}) \end{bmatrix} \\ \boldsymbol{\epsilon} &= \nabla^{\mathsf{s}} \mathbf{u} \\ \mathbf{x} \in \partial \Omega : & \mathbf{u}(\mathbf{x}) = \overline{\mathbf{\epsilon}} \cdot \mathbf{x} \end{aligned}$$

Effective constitutive law (Levin, 1967 [1])

$$\begin{split} \langle \sigma \rangle &= C^{\text{eff}} : \left[\langle \epsilon \rangle - \eta^{\text{eff}} \right] \\ C^{\text{eff}} &= \langle C : A \rangle \quad \text{and} \quad C^{\text{eff}} : \eta^{\text{eff}} = \langle A^{\mathsf{T}} : C : \eta \rangle \end{split}$$

All you need is the localization operator!

13

N. Laws, Journal of the Mechanics and Physics of Solids 1973, 21, 9–17.

Note on the macroscopic energy

Microscopic volume density of energy

$$\frac{1}{2}(\mathbf{\epsilon}-\mathbf{\eta}):\mathbf{C}:(\mathbf{\epsilon}-\mathbf{\eta})$$

Macroscopic volume density of energy

On mean-field / effective-field models

N-phase materials: assumptions

Properties are constant in each phase

$$\mathbf{x} \in \Omega_{\alpha}$$
: $\mathbf{C}(\mathbf{x}) = \mathbf{C}_{\alpha}$ and $\mathbf{\eta}(\mathbf{x}) = \mathbf{\eta}_{\alpha}$ $(\alpha = 1, ..., N)$

Stresses and strains are approximated by constants in each phase

$$\mathbf{x} \in \Omega_{\alpha}$$
: $\mathbf{\sigma}(\mathbf{x}) \simeq \mathbf{\sigma}_{\alpha}$ and $\mathbf{\varepsilon}(\mathbf{x}) \simeq \mathbf{\varepsilon}_{\alpha}$ $(\alpha = 1, ..., N)$

Localization tensors

$$\mathbf{\epsilon}_{\alpha} = \mathbf{A}_{\alpha} : \overline{\mathbf{\epsilon}}$$
 with $f_1 \mathbf{A}_1 + \dots + f_N \mathbf{A}_N = \mathbf{I}$

Estimates of the effective properties

$$\mathbf{C}^{\text{eff}} \simeq f_1 \mathbf{C}_1 : \mathbf{A}_1 + \dots + f_N \mathbf{C}_N : \mathbf{A}_N$$
$$\mathbf{C}^{\text{eff}} : \mathbf{\eta}^{\text{eff}} \simeq f_1 \mathbf{A}_1^{\mathsf{T}} : \mathbf{C}_1 : \mathbf{\eta}_1 + \dots + f_N \mathbf{A}_N^{\mathsf{T}} : \mathbf{C}_N : \mathbf{\eta}_N$$

Eshelby's inhomogeneity problem [1]

Strain within ellipsoid is uniform

$$\boldsymbol{\epsilon}_i = \boldsymbol{A}^{\infty}(\boldsymbol{C}_i,\boldsymbol{C}_m):\boldsymbol{\epsilon}^{\infty}$$

The dilute strain localization tensor

$$\mathbf{A}^{\infty}(\mathbf{C}_{i},\mathbf{C}_{m})=\left[\mathbf{I}+\mathbf{P}(\mathbf{C}_{m}):\left(\mathbf{C}_{i}-\mathbf{C}_{m}\right)\right]^{-1}$$

Hill tensor of a sphere (isotropic mat)

$$\mathbf{P}(\mu,\nu) = \frac{1-2\nu}{6\mu(1-\nu)}\mathbf{J} + \frac{4-5\nu}{15\mu(1-\nu)}\mathbf{K}$$
$$\mathbf{J} = \frac{1}{3}\mathbf{\delta} \otimes \mathbf{\delta} \qquad \mathbf{K} = \mathbf{I} - \mathbf{J}$$

[1] J. D. Eshelby, Proceedings of the Royal Society of London. Series A Mathematical and Physical Sciences 1957, 241, 376–396.

Mori–Tanaka estimate (explicit)

Each inclusion sees only the matrix

$$\begin{cases} \boldsymbol{\varepsilon}_{i} = \boldsymbol{A}^{\infty}(\boldsymbol{C}_{i}, \boldsymbol{C}_{m}) : \boldsymbol{\varepsilon}_{m} \\ \langle \boldsymbol{\varepsilon} \rangle = f_{i}\boldsymbol{\varepsilon}_{i} + f_{m}\boldsymbol{\varepsilon}_{m} \\ \langle \boldsymbol{\sigma} \rangle = f_{i}\boldsymbol{C}_{i} : \boldsymbol{\varepsilon}_{i} + f_{m}\boldsymbol{C}_{m} : \boldsymbol{\varepsilon}_{m} \end{cases}$$

$$\begin{cases} \mathbf{A}_{m}^{MT} = \left[f_{i} \mathbf{A}^{\infty} (\mathbf{C}_{i}, \mathbf{C}_{m}) + f_{m} \mathbf{I} \right]^{-1} \\ \mathbf{A}_{i}^{MT} = \mathbf{A}^{\infty} (\mathbf{C}_{i}, \mathbf{C}_{m}) : \mathbf{A}_{m}^{MT} \\ \mathbf{C}^{MT} = f_{i} \mathbf{C}_{i} : \mathbf{A}_{i} + f_{m} \mathbf{C}_{m} : \mathbf{A}_{m} \end{cases}$$

17

Self-consistent estimate (implicit)

Each phase sees the effective medium

$$\begin{cases} \mathbf{\epsilon}_{0} = \mathbf{A}^{\infty}(\mathbf{C}_{0}, \mathbf{C}^{\mathrm{sc}}) : \mathbf{\epsilon}^{\infty} \\ \mathbf{\epsilon}_{1} = \mathbf{A}^{\infty}(\mathbf{C}_{1}, \mathbf{C}^{\mathrm{sc}}) : \mathbf{\epsilon}^{\infty} \\ \langle \mathbf{\epsilon} \rangle = f_{0}\mathbf{\epsilon}_{1} + f_{1}\mathbf{\epsilon}_{\mathrm{m}} \\ \langle \boldsymbol{\sigma} \rangle = f_{0}\mathbf{C}_{0} : \mathbf{\epsilon}_{0} + f_{1}\mathbf{C}_{1} : \mathbf{\epsilon}_{1} \end{cases}$$

$$\begin{cases} \mathbf{A}_{\alpha}^{\infty} = \mathbf{A}^{\infty}(\mathbf{C}_{\alpha}, \mathbf{C}^{\mathrm{sc}}) \\ \mathbf{A}_{\infty}^{\mathrm{sc}} = \left(f_{0}\mathbf{A}_{0}^{\infty} + f_{1}\mathbf{A}_{1}^{\infty}\right)^{-1} \\ \mathbf{A}_{\alpha} = \mathbf{A}_{\alpha}^{\infty} : \mathbf{A}_{\infty}^{\mathrm{sc}} \\ \mathbf{C}^{\mathrm{sc}} = f_{0}\mathbf{C}_{0} : \mathbf{A}_{0} + f_{1}\mathbf{C}_{1} : \mathbf{A}_{1} \end{cases}$$

.

Homogenization models in one slide

What is required

- Microstructure fully defined by volume fraction f_1 ($f_0 + f_1 = 1$)
- Homogenization model fully defined by localization tensor:

$$\mathbf{A}_1(f_1,\mathbf{C}_0,\mathbf{C}_1) \quad (f_0\mathbf{A}_0+f_1\mathbf{A}_1=\mathbf{I}).$$

Effective stiffness

$$\mathbf{C}^{\text{eff}} = f_0 \mathbf{C}_0 : \mathbf{A}_0 + f_1 \mathbf{C}_1 : \mathbf{A}_1$$

Effective eigenstrain

$$\mathbf{C}^{\text{eff}}: \mathbf{\eta}^{\text{eff}} = f_0 \mathbf{A}_0^{\mathsf{T}}: \mathbf{C}_0: \mathbf{\eta}_0 + f_1 \mathbf{A}_1^{\mathsf{T}}: \mathbf{C}_1: \mathbf{\eta}_1$$

Effective energy

$$\frac{1}{2}(\overline{\boldsymbol{\epsilon}} - \boldsymbol{\eta}^{\text{eff}}) : \boldsymbol{\mathsf{C}}^{\text{eff}} : (\overline{\boldsymbol{\epsilon}} - \boldsymbol{\eta}^{\text{eff}})$$

Application to phase-field models

Volume fractions

Most simple form

$$\phi = 0 \rightarrow \text{phase 0 only}$$

 $\phi = 1 \rightarrow \text{phase 1 only}$ $\Rightarrow \phi = \text{volume fraction of phase 1?}$

More flexible form

 $h(\phi) =$ volume fraction of phase 1 $\overline{h}(\phi) = 1 - h(\phi) =$ volume fraction of phase 0

with the conditions

$$h(0) = 0$$
 $h(1) = 1$ $h'(0) = 0$ $h'(1) = 1$

Free energy (mechanical contribution)

The homogenization model

 $\mathbf{A}_1(f_1, \mathbf{C}_0, \mathbf{C}_1)$ with $f_1 = h(\phi)$ and $\mathbf{C}_0, \mathbf{C}_1$ fixed \Rightarrow $\mathbf{A}_1[h(\phi)]$

Homogenized energy

$$f_{\varepsilon}(\phi, \mathbf{\epsilon}) = \frac{1}{2} (\mathbf{\epsilon} - \mathbf{\eta}) : \mathbf{C} : (\mathbf{\epsilon} - \mathbf{\eta})$$

with

$$\mathbf{C} = \overline{h}\mathbf{C}_0 : \mathbf{A}_0 + h\mathbf{C}_1 : \mathbf{A}_1$$

and

$$\mathbf{C}:\mathbf{\eta}=\overline{h}\mathbf{A}_0^{\mathsf{T}}:\mathbf{C}_0:\mathbf{\eta}_0+h\mathbf{A}_1^{\mathsf{T}}:\mathbf{C}_1:\mathbf{\eta}_1$$

Notes on practical implementation

- Constitutive laws require first derivatives of f_{ε} w.r.t. ϕ and $\mathbf{\epsilon}$
- Newton iterations require higher order derivatives
- Derivatives w.r.t. volume fraction $h(\phi)$ can be quite painful for some homogenization models (e.g. self-consistent)
- Tabulate values for $0 \le h(\phi) \le 1$
- Use implicit function theorem?
- Use automatic differentiation?

23

Applications

Linear interpolation

$$\mathbf{C} = \overline{h}\mathbf{C}_0 + h\mathbf{C}_1$$
$$\mathbf{\eta} = \overline{h}\mathbf{\eta}_0 + h\mathbf{\eta}_1$$

Voigt approximation

$$\mathbf{A}_0 = \mathbf{A}_1 = \mathbf{I} \quad \Rightarrow \quad \begin{cases} \mathbf{C} = \overline{h} \mathbf{C}_0 + h \mathbf{C}_1 \\ \mathbf{C} : \mathbf{\eta} = \overline{h} \mathbf{C}_0 : \mathbf{\eta}_0 + h \mathbf{C}_1 : \mathbf{\eta}_1 \end{cases}$$

Reuss approximation

$$\mathbf{C}_0: \mathbf{A}_0 = \mathbf{C}_1: \mathbf{A}_1 = \mathbf{C} \quad \Rightarrow \quad \begin{cases} \mathbf{C}^{-1} = \overline{h} \mathbf{C}_0^{-1} + h \mathbf{C}_1^{-1} \\ \mathbf{\eta} = \overline{h} \mathbf{\eta}_0 + h \mathbf{\eta}_1 \end{cases}$$

Extensions

Extension to diffusion? (homogenized mobility?)

Laminate theory

$$\mathbf{C}^{\text{eff}}(f_1, \mathbf{C}_0, \mathbf{C}_1, \mathbf{n})$$
 with $f_1 = h(\phi)$ and $\mathbf{n} = \frac{\nabla \phi}{\|\nabla \phi\|}$

 ∇I

25

Material non-linearities

Geometric non-linearities

Thank you for your attention!

sebastien.brisard@univ-eiffel.fr

https://navier-lab.fr/en/equipe/brisard-sebastien https://cv.archives-ouvertes.fr/sbrisard https://sbrisard.github.io

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.